一. 问题描述 已知n个人,分别以编号1,2,3,...,n表示,围坐在一张圆桌周围.从编号为k的人开始报数1,数到m的那个人出列:他的下一个人又从1开始报数,数到m的那个人又出列:依此规律重复下去,直到圆桌周围的人全部出列,求最后一个出列人的编号,可记为P(n,m,k),或记为P(n,m,k,s = 1),其中s为起始编号. 二. 递归求解 n(假设n值很大,而k.m值都很小)个人围成一圈,从k开始以m为步长报数,第k+m-1个人出列:于是转化为n-1个人围成一圈,从(k+m-1)+1开始以m…
递推算法是非常常用的算法思想,在数学计算等场合有着广泛的应用.递推算法适合有明显公式规律的场合. 递推算法基本思想 递推算法是一种理性思维莫斯的代表,根据已有的数据和关系,逐步推到而得到结果.递推算法的执行过程如下: (1)根据已知结果和关系,求解中间结果. (2)判断是否达到要求,如果没有达到,则继续根据已知结果和关系求解中间结果.如果满足要求,则表示寻找到一个正确答案. 递推算法需要用户知道答案和问题之间的逻辑关系.在许多数学问题中,都有明确的计算公式可以遵循,因此可以采用递推算法来实现.…
首先看到这题脑子里立刻跳出链表..后来继续看如家的分析说,链表法时间复杂度为O(n*k),肯定会TLE,自己才意识到果然自个儿又头脑简单了 T^T. 看如家的分析没怎么看懂,后来发现这篇自己理解起来更容易(...)共享一下~http://blog.csdn.net/chenguolinblog/article/details/8873444 问题描述:n个人(编号0~(n-1)),从0开始报数,报到(m-1)的退出,剩下的人继续从0开始报数.求胜利者的编号. 编号0~(n-1)是有意义的,因为要…
约瑟夫斯问题(有时也称为约瑟夫斯置换),是一个出现在计算机科学和数学中的问题.在计算机编程的算法中,类似问题又称为约瑟夫环. 有n个囚犯站成一个圆圈,准备处决.首先从一个人开始,越过k-2个人(因为第一个人已经被越过),并杀掉第k个人. 接着,再越过k-1个人,并杀掉第k个人.这个过程沿着圆圈一直进行,直到最终只剩下一个人留下,这个人就可以继续活着. 问题是,给定了n和k,一开始要站在什么地方才能避免被处决? 问题是以弗拉维奥·约瑟夫斯命名的,它是1世纪的一名犹太历史学家.他在自己的日记中写道,…
约瑟夫环是一个数学的应用问题:已知n个人(以编号1,2,3...n分别表示)围坐在一张圆桌周围.从编号为k的人开始报数(从1开始报数),数到m的那个人出列:他的下一个人又从1开始报数,数到m的那个人又出列:依此规律重复下去,直到圆桌周围的人全部出列. 首先从编程的角度声明一下上面描述中的一点,就n,k,m这些都是下标从1开始的.而在实际编程中,我们一般将下标从0开始.所以这一点要注意一下. 第一种方法:使用队列. 这种解法直观,简单.首先你要明白队列这种数据结构,是一种先进先出的线性结构,如同生…
本文是通过例子学习C++的第六篇,通过这个例子可以快速入门c++相关的语法. 1.问题描述 n 个人围坐在一个圆桌周围,现在从第 s 个人开始报数,数到第 m 个人,让他出局:然后从出局的下一个人重新开始报数,数到第 m 个人,再让他出局......,如此反复直到所有人全部出局为止. 2.问题分析及用数组求解 约瑟夫环是经典的算法问题,如同"一千个读者就有一千个哈姆雷特",该问题每个人都有不同的解答.常见的有:数组:单向循环链表:静态链表:双向链表:队列:递推公式 ...... 首先简…
剑指Offer 面试题45:圆圈中最后剩下的数字(约瑟夫环问题) 原书题目:0, 1, - , n-1 这n个数字排成一个圈圈,从数字0开始每次从圆圏里删除第m个数字.求出这个圈圈里剩下的最后一个数字. 牛客网改编:孩子们的游戏(圆圈中最后剩下的数) 提交网址: http://www.nowcoder.com/practice/f78a359491e64a50bce2d89cff857eb6?tpId=13&tqId=11199 参与人数:1699  时间限制:1秒 空间限制:32768K 本题…
题意:约瑟夫环  初始前k个人后k个人  问m等于多少的时候 后k个先出去 题解:因为前k个位置是不动的,所以只要考虑每次递推后的位置在不在前面k个就行 有递推式 ans[i]=(ans[i-1]+m-1)%(n-i-1)  其中i是轮数  ans[i]是i出局的位置 出局后后面的补到前面 也就是i+1轮开始的位置了   m是数多少个出去 这里的是从0开始的,而题目是从一开始 ,平移一下即可 只要ans[i] 前K次不落在前K个即可  打表也行 #include<iostream> #incl…
就是经典约瑟夫环问题的裸题 我一开始一直没理解这个递推是怎么来的,后来终于理解了 假设问题是从n个人编号分别为0...n-1,取第k个, 则第k个人编号为k-1的淘汰,剩下的编号为  0,1,2,3...k-2,k,k+1,k+2... 此时因为从刚刚淘汰那个人的下一个开始数起,因此重新编号 把k号设置为0,则 k    0 k+1 1 ... 0 n-k 1 n-k+1 假设已经求得了n-1个人情况下的最终胜利者保存在f[n-1]中,则毫无疑问,该胜利者还原到原来的真正编号即为 (f[n-1]…
约瑟夫环问题的原来描述为,设有编号为1,2,--,n的n(n>0)个人围成一个圈,从第1个人开始报数,报到m时停止报数,报m的人出圈,再从他的下一个人起重新报数,报到m时停止报数,报m的出圈,--,如此下去,直到所有人全部出圈为止.当任意给定n和m后,设计算法求n个人出圈的次序.  稍微简化一下. 问题描述:n个人(编号0~(n-1)),从0开始报数,报到(m-1)的退出,剩下的人继续从0开始报数.求胜利者的编号. 利用数学推导,如果能得出一个通式,就可以利用递归.循环等手段解决.下面给出推导的…