LSTM 原理 CRF 原理 给定一组输入随机变量条件下另一组输出随机变量的条件概率分布模型.假设输出随机变量构成马尔科夫随机场(概率无向图模型)在标注问题应用中,简化成线性链条件随机场,对数线性判别模型,学习方法通常是最大似然估计或正则化的最大似然估计. 概率无向图模型: 无向图表示的联合概率分布. 1. 定义: 成对马尔科夫性,局部马尔科夫性,全局马尔科夫性, 上述三个性质定义等价,主要阐述,三个集合,A, B, C,其中集合A和B表示在无向图G中被结点集合C分开的任意结点集合 给定随机变量…
无论即将到来的是大数据时代还是人工智能时代,亦或是传统行业使用人工智能在云上处理大数据的时代,作为一个有理想有追求的程序员,不懂深度学习(Deep Learning)这个超热的技术,会不会感觉马上就out了?现在救命稻草来了,<零基础入门深度学习>系列文章旨在讲帮助爱编程的你从零基础达到入门级水平.零基础意味着你不需要太多的数学知识,只要会写程序就行了,没错,这是专门为程序员写的文章.虽然文中会有很多公式你也许看不懂,但同时也会有更多的代码,程序员的你一定能看懂的(我周围是一群狂热的Clean…
长短时记忆网络 循环神经网络很难训练的原因导致它的实际应用中很处理长距离的依赖.本文将介绍改进后的循环神经网络:长短时记忆网络(Long Short Term Memory Network, LSTM), 原始RNN的隐藏层只有一个状态,即h,它对于短期的输入非常敏感.那么如果我们再增加一个状态,即c,让它来保存长期的状态,这就是长短时记忆网络. 新增加的状态c,称为单元状态.我们把上图按照时间维度展开: 可以看到在t时刻,LSTM的输入有三个:当前时刻网络的输出值$x_t$.上一时刻LSTM的…
代码: def forward(self, x): ''' 根据式1-式6进行前向计算 ''' self.times += 1 # 遗忘门 fg = self.calc_gate(x, self.Wfx, self.Wfh, self.bf, self.gate_activator) self.f_list.append(fg) # 输入门 ig = self.calc_gate(x, self.Wix, self.Wih, self.bi, self.gate_activator) self.…
1.循环神经网络的标准模型 前馈神经网络能够用来建立数据之间的映射关系,但是不能用来分析过去信号的时间依赖关系,而且要求输入样本的长度固定 循环神经网络是一种在前馈神经网络中增加了分亏链接的神经网络,能够产生对过去数据的记忆状态,所以可以用于对序列数据的处理,并建立不同时段数据之间的依赖关系 循环神经网络是一类允许节点连接成有向环的人工神经网络.如下图: 2.循环神经网络与递归神经网络 从广义上说,递归神经网络可以分为结构递归神经网络和时间递归神经网络 从狭义上说,递归神经网络可以通常就是指结构…
LSTM(Long Short-term Memory),长短时记忆网络是1997年Hochreiter和Schmidhuber为了解决预测位置与相关信息之间的间隔增大或者复杂语言场景中,有用信息间隔有大有小.长短不一,造成循环神经网络性能受到限制而提出的. LSTM是RNN的一种特殊类型,它可以学习长期依赖的信息.与单一RNN不同,LSTM网络结构是一种拥有3个”门”结构的特殊网络结构,这个特殊设计可以避免长期依赖问题. 下面介绍LSTM网络结构: 原始的RNN隐藏层只有一个状态h,它对于短期…
一.前言 在图像处理领域,卷积神经网络(Convolution Nerual Network,CNN)凭借其强大的性能取得了广泛的应用.作为一种前馈网络,CNN中各输入之间是相互独立的,每层神经元的信号只能向下一层传播,同一卷积层对不同通道信息的提取是独立的.因此,CNN擅长于提取图像中包含的空间特征,但却不能够有效处理时间序列数据(语音.文本等). 时序数据往往包含以下特性: 输入的序列数据长度是不固定(如机器翻译,句子长度不固定) 不同时刻的数据存在相互影响(如前一时刻的事实会影响后续时刻的…
转载自:http://www.68idc.cn/help/jiabenmake/qita/20160530618222.html 首先我们先弄懂什么是"条件随机场",然后再探索其详细内容. 于是,先介绍几个名词. 马尔可夫链 比如:一个人想从A出发到达目的地F,然后中间必须依次路过B,C, D, E,于是就有这样一个状态: 若想到达B,则必须经过A: 若想到达C,则必须经过A, B: 以此类推,最终 若想到达F,则必须经过A,B,C,D,E. 如果把上面的状态写成一个序列的话,那就是:…
声明: 1,本篇为个人对<2012.李航.统计学习方法.pdf>的学习总结,不得用作商用,欢迎转载,但请注明出处(即:本帖地址). 2,由于本人在学习初始时有很多数学知识都已忘记,所以为了弄懂其中的内容查阅了很多资料,所以里面应该会有引用其他帖子的小部分内容,如果原作者看到可以私信我,我会将您的帖子的地址付到下面. 3,如果有内容错误或不准确欢迎大家指正. 4,如果能帮到你,那真是太好了. 首先我们先弄懂什么是“条件随机场”,然后再探索其详细内容. 于是,先介绍几个名词. 马尔可夫链 比如:一…
转载自:http://www.68idc.cn/help/jiabenmake/qita/20160530618218.html 参考书本: <2012.李航.统计学习方法.pdf> 书上首先介绍概率无向图模型,然后叙述条件随机场的定义和各种表示方法,那这里也按照这个顺序来. 概率无向图模型(马尔可夫随机场) 其实这个又叫做马尔可夫随机场(MRF),而这里需要讲解的条件随机场就和其有脱不开的关系. 模型定义 首先是无向图.那什么是无向图呢? 其实无向图就是指没有方向的图....我没有开玩笑,无…