本文目的 当前spark(1.3版)随机森林实现,没有包括OOB错误评估和变量权重计算.而这两个功能在实际工作中比较常用.OOB错误评估可以代替交叉检验,评估模型整体结果,避免交叉检验带来的计算开销.现在的数据集,变量动辄成百上千,变量权重有助于变量过滤,去掉无用变量,提高计算效率,同时也可以帮助理解业务.所以,本人在原始代码基础上,扩展了这两个功能,下面记录实现过程,作为备忘录(参考代码). 整体思路 Random Forest实现中,大多数内部对象是私有(private[tree])的,所以…
前言 最近阅读了spark mllib(版本:spark 1.3)中Random Forest的实现,发现在分布式的数据结构上实现迭代算法时,有些地方与单机环境不一样.单机上一些直观的操作(递归),在分布式数据上,必须进行优化,否则I/O(网络,磁盘)会消耗大量时间.本文整理spark随机森林实现中的相关技巧,方便后面回顾.   随机森林算法概要 随机森林算法的详细实现和细节,可以参考论文Breiman 2001.这里简单说说大体思路,方便理解代码. 随机森林是一个组装(ensemble mod…
摘要:在随机森林之Bagging法中可以发现Bootstrap每次约有1/3的样本不会出现在Bootstrap所采集的样本集合中,当然也就没有参加决策树的建立,那是不是意味着就没有用了呢,答案是否定的.我们把这1/3的数据称为袋外数据oob(out of bag),它可以用于取代测试集误差估计方法. 在论文: 1:Bias,variance and prediction error for classification rules.<Robert Tibshiranni> 2: An Effi…
Spark Streaming揭秘 Day9 从Receiver的设计到Spark框架的扩展 Receiver是SparkStreaming的输入数据来源,从对Receiver整个生命周期的设计,我们可以充分领略到Spark框架设计之巧妙,废话少说,让我们来看代码. 解决的问题 在开始之前,让我们先明确一个概念,就是Receiver于inputDStream之间的关系,从如下代码中,我们可以看到,receiver其实是由inputDStream映射得到的,也就是说Receiver和inputDS…
原文链接: Spark RDD API扩展开发(1) Spark RDD API扩展开发(2):自定义RDD 我们都知道,Apache Spark内置了很多操作数据的API.但是很多时候,当我们在现实中开发应用程序的时候,我们需要解决现实中遇到的问题,而这些问题可能在Spark中没有相应的API提供,这时候,我们就需要通过扩展Spark API来实现我们自己的方法.我们可以通过两种方法来扩展Spark API,(1).其中一种就是在现有的RDD中添加自定义的方法:(2).第二种就是创建属于我们自…
这样的问题,对于我们这样的初学者来说,无疑是一个接触sql server后第一个艰难的问题,“实时错误'91' 对象变量或with块变量未设置”这句话到底透露出什么信息?直至写此博文,我依然看不出什么,但是却知道引起的一些原因,是它提示的有问题,还是我学的还不足以理解其中的玄机? 不过现在就不要追究太多了,感觉能解决问题就阿弥陀佛了,等以后自然会理解的. 根据我这些天对数据库的接触,基本上每次出现这档子问题,都是因为“数据库未连接成功”导致的,而且作为一个数据库的初学者,不知道别人怎么样,反正我…
理解dropout from:http://blog.csdn.net/stdcoutzyx/article/details/49022443 http://www.cnblogs.com/tornadomeet/p/3258122.html 开篇明义,dropout是指在深度学习网络的训练过程中,对于神经网络单元,按照一定的概率将其暂时从网络中丢弃.注意是暂时,对于随机梯度下降来说,由于是随机丢弃,故而每一个mini-batch都在训练不同的网络. Dropout是指在模型训练时随机让网络某些…
随机森林有一个重要的优点就是,没有必要对它进行交叉验证或者用一个独立的测试集来获得误差的一个无偏估计.它可以在内部进行评估,也就是说在生成的过程中就可以对误差建立一个无偏估计. 随机森林在生成每颗决策树时,会随机且有放回的抽取样本,每棵决策树会有大概1/3的样本未抽取到,这些样本就是每棵树的oob样本.具体计算过程如下: 根据这种特点,我们可以对其进行oob估计,步骤如下: 1.计算决策树对其对应的oob样本的分类情况(约有1/3棵树参与oob估计) 2.以投票的方式确定该样本的分类 3.计算o…
package big.data.analyse.ml.randomforest import org.apache.spark.ml.Pipeline import org.apache.spark.ml.classification.{RandomForestClassificationModel, RandomForestClassifier} import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator i…
随机森林(Random Forest): 随机森林是一个最近比较火的算法,它有很多的优点: 在数据集上表现良好 在当前的很多数据集上,相对其他算法有着很大的优势 它能够处理很高维度(feature很多)的数据,并且不用做特征选择 在训练完后,它能够给出哪些feature比较重要 在创建随机森林的时候,对generlization error使用的是无偏估计 训练速度快 在训练过程中,能够检测到feature间的互相影响 容易做成并行化方法 实现比较简单 在建立每一棵决策树的过程中,有两点需要注意…