NIM游戏策略】的更多相关文章

NIM取子游戏是由两个人面对若干堆硬币(或石子,或..)进行的游戏,游戏由两个人进行,设有k>=1堆硬币,各堆含有n1,n2,n3,n4.....,nk个硬币,游戏的目的就是选取最后剩下的硬币.游戏规则如下: 1)游戏人交替进行游戏: 2)当轮到每个游戏人取子时,选择这些硬币中的一堆,并从所选的堆中取走至少一枚硬币(可以将所选堆中所有硬币全部取走剩下一个空堆). 当所有堆变成空堆时,游戏结束.最后取子的人(即能够取走最后一堆中的所有硬币的人)获胜. 这个问题中的变量是堆数k和各堆的硬币数n1,n…
题目:http://poj.org/problem?id=1704 思路:Nim游戏策略,做如下转换,如果N是偶数,则两两配对,将两个数之间的格子数(距离)看做成这一堆石头的数量. 如果N是奇数,则将一个0的格子放在第一个. 代码: #include<iostream> #include<algorithm> using namespace std; const int MAXN=10000+2; int N,P[MAXN]; int main() { int t; cin>…
[题目分析] 神奇的题目,两人都可以第一次取走足够多堆的石子. nim游戏的规则是,如果异或和为0,那么就先手必输,否则先手有必胜策略. 所以只需要剩下一群异或和为0就可以了. 先排序,线性基扫一遍即可(保留最多的不为0的堆) [代码] #include <cstdio> #include <cstring> #include <cstdlib> #include <cmath> #include <set> #include <map&g…
: 博弈游戏·Nim游戏 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 今天我们要认识一对新朋友,Alice与Bob.Alice与Bob总是在进行各种各样的比试,今天他们在玩一个取石子的游戏.在这个游戏中,Alice和Bob放置了N堆不同的石子,编号1..N,第i堆中有A[i]个石子.每一次行动,Alice和Bob可以选择从一堆石子中取出任意数量的石子.至少取1颗,至多取出这一堆剩下的所有石子.Alice和Bob轮流行动,取走最后一个石子的人获得胜利.假设每一轮游…
(2017腾讯实习生校招笔试题)Calvin和David正在玩取纽扣游戏,桌上一共有16个纽扣,两人轮流来取纽扣,每人每次可以选择取1个或3个或6个(不允许不取),谁取完最后的纽扣谁赢.Cavin和David都非常想赢得这个游戏,如果Cavin可以先取,Cavin的必胜策略下第一步应该取 A.1个 B.3个 C.6个 D.Cavin没有必胜策略 解析:这道题是Nim游戏的变种,Nim游戏是博弈论中最经典的模型(之一). 根据博弈论的性质:对于巴什博弈,存在必胜点和必败点,是指在当前这个点上的先手…
www.lydsy.com/JudgeOnline/problem.php?id=3105 (题目链接) 题意 在第一个回合中,第一个游戏者可以直接拿走若干个整堆的火柴.可以一堆都不拿,但不可以全部拿走.第二回合也一样,第二个游戏者也有这样一次机会.从第三个回合(又轮到第一个游戏者)开始,规则和Nim游戏一样.问是否有先手必胜策略. Solution 动态维护线性基.拟阵证明?我也不会,请自行百度. 代码 // bzoj3105 #include<algorithm> #include<…
Nim游戏的概述: 还记得这个游戏吗?给出n列珍珠,两人轮流取珍珠,每次在某一列中取至少1颗珍珠,但不能在两列中取.最后拿光珍珠的人输.后来,在一份资料上看到,这种游戏称为“拈(Nim)”.据说,它源自中国,经由被贩卖到美洲的奴工们外传.辛苦的工人们,在工作闲暇之余,用石头玩游戏以排遣寂寞.后来流传到高级人士,则用便士(Pennies),在酒吧柜台上玩.最有名的玩法,是把十二枚便士放成3.4.5三列,拿光铜板的人赢.后来,大家发现,先取的人只要在3那列里取走2枚,变成了1.4.5,就能稳操胜券了…
http://baike.baidu.com/view/1101962.htm?fr=aladdin Nim游戏是博弈论中最经典的模型(之一),它又有着十分简单的规则和无比优美的结论 Nim游戏是组合游戏(Combinatorial Games)的一种,准确来说,属于“Impartial Combinatorial Games”(以下简称ICG). 通常的Nim游戏的定义是这样的:有若干堆石子,每堆石子的数量都是有限的,合法的移动是“每次一个游戏者可以从任意一堆中拿走至少一颗石子,也可以整堆拿走…
Nim游戏的概述: 还记得这个游戏吗? 给出n列珍珠,两人轮流取珍珠,每次在某一列中取至少1颗珍珠,但不能在两列中取.最后拿光珍珠的人输. 后来,在一份资料上看到,这种游戏称为"拈(Nim)".据说,它源自中国,经由被贩卖到美洲的奴工们外传.辛苦的工人们,在工作闲暇之余,用石头玩游戏以排遣寂寞.后来流传到高级人士,则用便士(Pennies),在酒吧柜台上玩. 最有名的玩法,是把十二枚便士放成3.4.5三列,拿光铜板的人赢.后来,大家发现,先取的人只要在3那列里取走2枚,变成了1.4.5…
题解:简单的NIM游戏,直接计算SG函数,至于找先手策略则按字典序异或掉,去除石子后再异或判断,若可行则直接输出. #include <cstdio> const int N=1005; int SG[N],b[N],hash[N],a[N],sum,tmp,i,j,n,m; void FSG(int s){ SG[0]=0; for(int i=1;i<=s;i++){ for(int j=1;b[j]<=i&&j<=m;j++)hash[SG[i-b[j]…