​  前言  在<论文创新的常见思路总结>(点击标题阅读)一文中,提到过一些新的数据集或者新方向比较容易出论文.因此纠结于选择课题方向的读者可以考虑以下几个新方向.文末附相关论文获取方式. 本文来自公众号CV技术指南的技术总结系列 关注公众号CV技术指南 ,专注于计算机视觉的技术总结.最新技术跟踪.经典论文解读. 一些新发布的数据集可以提供一个窗口,通过这些数据集可以了解试图解决的问题的复杂程度.公共领域中新发布的数据集可以很好地代表理解计算机视觉的发展以及有待解决的问题的新途径. 本文简要总…
人工智能大数据,公开的海量数据集下载,ImageNet数据集下载,数据挖掘机器学习数据集下载 ImageNet挑战赛中超越人类的计算机视觉系统微软亚洲研究院视觉计算组基于深度卷积神经网络(CNN)的计算机视觉系统,在ImageNet 1000挑战中首次超越了人类进行对象识别分类的能力.他们的系统在ImageNet 2012分类数据集中的错误率已降低至4.94%.这个数据集包含约120万张训练图像.5万张验证图像和10万张测试图像,分为1000个不同的类别.该研究团队由微软亚洲研究院研究员孙剑.何…
机器学习数据集,主数据集不能通过,人脸数据集介绍,从r包中获取数据集,中国河流数据集   选自Microsoft www.tz365.Cn 作者:Lee Scott 机器之心编译 参与:李亚洲.吴攀.杜夏德 要学习怎么使用微软 Azure 机器学习,最重要的是获取样本数据集和进行实验. 在微软,我们有大量的样本数据集可用.这些数据集已经在 Azure Cortana Intelligence Gallery 中的样本模型中得到了应用. 其中一些数据集可以通过 Azure Blob 存储获取,所以…
Homepage/演示网站:https://pair-code.github.io/facets/ Pypi:https://pypi.org/project/facets-overview/ Github:https://github.com/PAIR-code/facets 1. 什么是Facets? Better data leads to better models. 机器学习的强大之处在于从大量数据中学习到其中的模式.构建一个机器学习系统时,理解你的数据是关键的一步. Facets包含…
新手入门完整教程进阶指南 API中文手册精华文章TF社区 INTRODUCTION 1. 新手入门 1.1. 介绍 1.2. 下载及安装 1.3. 基本用法 2. 完整教程 2.1. 总览 2.2. MNIST 数据下载 2.3. MNIST 入门 2.4. MNIST 进阶 2.5. TENSORFLOW 运作方式入门 2.6. 卷积神经网络 2.7. 字词的向量表示 2.8. 递归神经网络 2.9. 曼德布洛特(MANDELBROT)集合 2.10. 偏微分方程 3. 进阶指南 3.1. 总…
前言 本文收集汇总了目前CVPR 2022已放出的一些数据集资源. 转载自极市平台 欢迎关注公众号CV技术指南,专注于计算机视觉的技术总结.最新技术跟踪.经典论文解读.CV招聘信息. M5Product Dataset 论文地址:https://arxiv.org/abs/2109.04275 数据集地址:https://xiaodongsuper.github.io/M5Product_dataset/index.html M5Product 数据集是一个大规模的多模态预训练数据集,具有针对电…
接触机器学习1年多了,由于只会用C#堆代码,所以只关注.NET平台的资源,一边积累,一边收集,一边学习,所以在本站第101篇博客到来之际,分享给大家.部分用过的 ,会有稍微详细点的说明,其他没用过的,也是我关注的,说不定以后会用上.机器学习并不等于大数据或者数据挖掘,还有有些区别,有些东西可以用来处理大数据的问题或者数据挖掘的问题,他们之间也是有部分想通的,所以这些组件不仅仅可以用于机器学习,也可以用于数据挖掘相关的. 按照功能把资源分为3个部分,开源综合与非综合类,以及其他网站博客等资料.都是…
出处:http://www.cnblogs.com/asxinyu/p/4422050.html 阅读目录 1.开源综合类 2.开源.NET平台非综合类 3.其他资源与技术博客 4.我的100篇博客之路 接触机器学习1年多了,由于只会用C#堆代码,所以只关注.NET平台的资源,一边积累,一边收集,一边学习,所以在本站第101篇博客到来之际,分享给大家.部分用过的 ,会有稍微详细点的说明,其他没用过的,也是我关注的,说不定以后会用上.机器学习并不等于大数据或者数据挖掘,还有有些区别,有些东西可以用…
[本文链接:http://www.cnblogs.com/breezedeus/p/3496819.html,转载请注明出处] 从等式约束的最小化问题说起:                                                                                       上面问题的拉格朗日表达式为:                                             也就是前面的最小化问题可以写为:          …