luogu4151 最大XOR和路径】的更多相关文章

然后呢这道题其实很简单 我们先考虑一种简单的情况,从1直接走到n(不管怎么走的,反正就是走) 然后就能找到一个路径了 这个走的过程用各种zmj算法都能过 然后呢我们发现如果直接走基本不会得到最优解,考虑模拟退火 考虑增广 一个增广方法是,从某一个点开始走到一个环,在环上走一圈,然后原路返回,如图 然后呢这个图画的有点丑了 我们发现,增广的路径就是环上的路径,往返的路径上两次xor就xor没了,对答案的贡献为0 然后所以我们枚举所有环,把这条环的xor扔进线性基,查询时候直接用1到n的一条路径去查…
2337: [HNOI2011]XOR和路径 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 682  Solved: 384[Submit][Status][Discuss] Description 几乎是一路看题解过来了.. 拖了一个星期的题目- - 已然不会概率DP(说得好像什么时候会过一样),高斯消元(打一次copy一遍). 发现异或题目的新解决方法:按位处理.. 发现DP新方法:高斯消元. f[k][i]代表第k位权值起点为i到终点时答案…
题解: 异或操作是每一位独立的,所以我们可以考虑每一位分开做. 假设当前正在处理第k位 那令f[i]表示从i到n 为1的概率.因为不是有向无环图(绿豆蛙的归宿),所以我们要用到高斯消元. 若有边i->j 权值为w,若w的k位为0,则f[i]+=1/du[i] * f[j],否则f[i]+=(1-f[j])/du[i] 注意我们现在在往回走,所以度数是i的而不是j的. 然后就可以高斯消元解出来了. 装X用模方程的lcm然后发现导致误差越来越大,WA出翔 代码: #include<cstdio&g…
一位一位考虑异或结果, f(x)表示x->n异或值为1的概率, 列出式子然后高斯消元就行了 ------------------------------------------------------------------ #include<cstdio> #include<cstring> #include<algorithm> #include<cmath>   using namespace std;   typedef long double…
2337: [HNOI2011]XOR和路径 题意:一个边权无向连通图,每次等概率走向相连的点,求1到n的边权期望异或和 这道题和之前做过的高斯消元解方程组DP的题目不一样的是要求期望异或和,期望之间不能异或所以不能直接求 发现每个二进制位是独立的,我们可以一位一位考虑,设当前考虑第i位 \(f[u]\)表示从u到n异或和为1的概率, \[ f[u] = \sum_{(u,v) \in E,\ w(u,v)的第i位是1} \frac{f(v)}{degree_u} \\ f[u] = \sum_…
[BZOJ2337]Xor和路径(高斯消元) 题面 BZOJ 题解 我应该多学点套路: 对于xor之类的位运算,要想到每一位拆开算贡献 所以,对于每一位拆开来看 好了,既然是按位来算 我们就只需要计算从\(1\)号点开始 到\(n\)的路径中,路径的异或和为\(1\)的概率 显然没法算 还是一样的 考虑高斯消元 对于每一个节点\(i\) \[f[i]=\sum_{w(u,i)=1}\frac{1-f[u]}{op[u]}+\sum_{w(u,i)=1}\frac{f[u]}{op[u]}\] 其…
[HNOI2011]XOR和路径 题目大意 具体题目:戳我 题目: 给定一个n个点,m条边的有重边.有自环的无向图,其中每个边都有一个边权. 现在随机选择一条1到n的路径,路径权值为这条路径上所有边权的异或和. 特别注意,如果同一条边在路径中经过了多次,那么路径权值也要异或对应次数的边权. 请回答 这条路径的 期望权值 为多少. 数据范围:\(n \leq 100\) , \(m \leq 10^4\) .对于所有边,\(val_E \leq 10^9\). 思路及解法 A 首先,求异或问题拆成…
P4151 [WC2011]最大XOR和路径 题意 求无向带权图的最大异或路径 范围 思路还是很厉害的,上午想了好一会儿都不知道怎么做 先随便求出一颗生成树,然后每条返祖边都可以出现一个环,从的路径上走到环绕一圈再走回来去和回来的路径抵消,于是对每个环加入线性基,询问一下路径在上面的最大值就行了 Code: #include <cstdio> #define ll long long const int N=5e4+10; const int M=2e5+10; int head[N],to[…
[WC2011]最大XOR和路径 LG传送门 需要充分发掘经过路径的性质:首先注意不一定是简单路径,但由于统计的是异或值,重复走是不会被统计到的,考虑对于任意一条从\(1\)到\(n\)的路径的有效部分是什么.最简单的情况就是走一条链,有时候我们会从这条链走出去,走一段路径之后走一个环,再沿这条路径回到原来的链上,这样一来答案就变成了原来的链异或找到的环.我们发现任意的环都可以用来更新答案,那么我们找到原图中所有的环丢进线性基里,再把所有一条\(1\)到\(n\)的链在线性基里查询最大异或和就行…
P4151 [WC2011]最大XOR和路径 一道妙极了的题. 首先直接从1走到n 然后现在图上有很多环 所以可以在走到n之后走到环上一个点,再走一遍环,再原路返回.这样就会xor上环的权值. 然后只需要把环搜出来就星了. // It is made by XZZ #include<cstdio> #include<algorithm> #define il inline #define rg register #define vd void #define sta static…