转自 https://www.csdn.net/article/2014-05-19/2819831-TDW-Shuffle/1 摘要:腾讯分布式数据仓库基于开源软件Hadoop和Hive进行构建,TDW计算引擎包括两部分:MapReduce和Spark,两者内部都包含了一个重要的过程—Shuffle.本文对Shuffle过程进行解析,并对两个计算引擎的Shuffle过程进行比较. 腾讯分布式数据仓库(Tencent distributed Data Warehouse, 简称TDW)基于开源软…
相关博文: 大数据系列之并行计算引擎Spark介绍 之前介绍过关于Spark的程序运行模式有三种: 1.Local模式: 2.standalone(独立模式) 3.Yarn/mesos模式 本文将介绍Spark安装及运行模式的第1.3两种模式. 安装包: spark-2.1.0-bin-hadoop2.7.tgz   size:195MB 下载链接: https://pan.baidu.com/s/1bphB3Q3 密码: 9v5h 安装步骤: 1.本地模式: 1.直接将tgz包放置在任一目录:…
相关博文:大数据系列之并行计算引擎Spark部署及应用 Spark: Apache Spark 是专为大规模数据处理而设计的快速通用的计算引擎. Spark是UC Berkeley AMP lab (加州大学伯克利分校的AMP实验室)所开源的类Hadoop MapReduce的通用并行框架,Spark,拥有Hadoop MapReduce所具有的优点:但不同于MapReduce的是Job中间输出结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭…
1.Impala简介 • Cloudera公司推出,提供对HDFS.Hbase数据的高性能.低延迟的交互式SQL查询功能. • 基于Hive使用内存计算,兼顾数据仓库.具有实时.批处理.多并发等优点 • 是CDH平台首选的PB级大数据实时查询分析引擎 官网:http://www.cloudera.com/products/apache-hadoop/impala.html http://www.impala.io/index.html 下面是在基于单用户和多用户查询的时候,不同的查询分析器所使用…
服务端.实时.大数据.AI计算,各种各样的计算,计算机本质是什么,计算机的本质是 利用compute的计算速度为人提供更优的计算结果. 所以实时也好,准实时.离线.AI本质上是两个维度,实时准实时强调计算的速度,大数据 AI强调数据量以及速度. 1.实时计算,扩量的两个方式多线程多核计算,以及多个机器.每个机器多线程多核计算. 2.大数据.AI强调数据量更多多机器进行计算,来处理多个机器计算.…
大数据与科学计算  库名称 简介 pycuda/opencl GPU高性能并发计算 Pandas python实现的类似R语言的数据统计.分析平台.基于NumPy和Matplotlib开发的,主要用于数据分析和数据可视化,它的数据结构DataFrame和R语言里的data.frame很像,特别是对于时间序列数据有自己的一套分析机制,非常不错. Open Mining 商业智能(BI),Pandas的Web界面. blaze NumPy和Pandas大数据界面. SciPy 开源的Python算法…
导语 | 近日,云+社区技术沙龙“腾讯开源技术”圆满落幕.本次沙龙邀请了多位腾讯技术专家,深度揭秘了腾讯开源项目TencentOS tiny.TubeMQ.Kona JDK.TARS以及MedicalNet.本文是杨晓峰老师关于腾讯基于OpenJDK的自研Kona JDK开源项目的详细介绍. 一.Tencent Kona 缘起 1. OpenJDK 经常听人谈到 OpenJDK,那它到底是什么呢?相信大家都听说过 Java SE.ME.EE等规范, 通常意义上对 Open JDK 的定义指:Ja…
背景 随着大数据时代的到来,Hadoop在过去几年以接近统治性的方式包揽的ETL和数据分析查询的工作,大家也无意间的想往大数据方向靠拢,即使每天数据也就几十.几百M也要放到Hadoop上作分析,只会适得其反,但是当面对真正的Big Data的时候,Hadoop就会暴露出它对于数据分析查询支持的弱点.甚至出现<MapReduce: 一个巨大的倒退>此类极端的吐槽,这也怪不得Hadoop,毕竟它的设计就是为了批处理,使用用MR的编程模型来实现SQL查询,性能肯定不如意.所以通常我也只是把Hive当…
本文来自:http://blog.csdn.net/yu616568/article/details/52431835 如有侵权 可立即删除 背景 随着大数据时代的到来,Hadoop在过去几年以接近统治性的方式包揽的ETL和数据分析查询的工作,大家也无意间的想往大数据方向靠拢,即使每天数据也就几十.几百M也要放到Hadoop上作分析,只会适得其反,但是当面对真正的Big Data的时候,Hadoop就会暴露出它对于数据分析查询支持的弱点.甚至出现<MapReduce: 一个巨大的倒退>此类极端…
OLAP(On-Line Analytical Processing),是数据仓库系统的主要应用形式,帮助分析人员多角度分析数据,挖掘数据价值.本文基于QQ音乐海量大数据实时分析场景,通过QQ音乐与腾讯云EMR产品深度合作的案例解读,还原一个不一样的大数据云端解决方案. 一.背景介绍 ​ QQ音乐是腾讯音乐旗下一款领先的音乐流媒体产品,平台打造了“听.看.玩”的立体泛音乐娱乐生态圈,为累计注册数在8亿以上的用户提供多元化音乐生活体验,畅享平台上超过3000万首歌曲的海量曲库.优质服务的背后,是每…
Flink窗口背景 Flink认为Batch是Streaming的一个特例,因此Flink底层引擎是一个流式引擎,在上面实现了流处理和批处理.而Window就是从Streaming到Batch的桥梁.通俗讲,Window是用来对一个无限的流设置一个有限的集合,从而在有界的数据集上进行操作的一种机制.流上的集合由Window来划定范围,比如"计算过去10分钟"或者"最后50个元素的和".Window可以由时间(Time Window)(比如每30s)或者数据(Coun…
不久前,裸考国内知名电商平台拼多多的大数据岗位在线笔试,问答题(写SQL)被虐的很惨,完了下来默默学习一波.顺便借此机会复习一下SQL语句的用法. 本文主要涉及到的SQL知识点包括CREATE创建数据库和表.INSERT插入数据.SUM()求和.GROUP BY分组.DATE_FORMAT()格式化日期.ORDER BY排序.COUNT()统计行数.添加排名.MySQL实现统计排名.并列排名等,如果你对这些操作还有点不熟练,那么相信你读完本文会有收获的,如果自己再实现一遍效果更好. 准备工作 根…
这几天学习了MapReduce,我参照资料,自己又画了两张MapReduce的架构图. 这里我根据架构图以及对应的源码,来解释一次分布式MapReduce的计算到底是怎么工作的. ​话不多说,开始! 首先,结合我画的架构图来进行解释. 上图是MapReduce的基本运行逻辑.把图从中间切分,左边为Map任务,右边为Reduce任务.Map的输出是Reduce的输入.因此Map执行完毕Reduce才能执行,两者的执行顺序是一个线性关系,即输入输出的关系为:HDFS->Map->Reduce-&g…
January 25, 2019Use Cases, Apache Flink The Big Data Team at Tencent     In recent years, the increasing need for timeliness, together with advances in software and hardware technologies, drive the emergence of real-time stream processing. Real-time…
大数据时代,TB级甚至PB级数据已经超过单机尺度的数据处理,分布式处理系统应运而生. 知识预热 「专治不明觉厉」之“大数据”: 大数据生态圈及其技术栈: 关于大数据的四大特征(4V) 海量的数据规模(Volume):Quantifiable(可量化) 高速的数据流转和动态的数据体系(Velocity):Measurable(可衡量) 多样的数据类型(Variety):Comparable(可对比) 巨大的数据价值(Value):Evaluable(可评估) 关于大数据应用场景: 数据挖掘 智能推…
随着移动互联网.云计算.物联网和大数据技术的广泛应用,现代社会已经迈入全新的大数据时代.数据的爆炸式增长以及价值的扩大化,将对企业未来的发展产生深远的影响,数据将成为企业的核心资产.如何处理大数据,挖掘大数据的价值,让大数据为企业的发展保驾护航,将是未来信息技术发展道路上关注的重点. 传统的数据处理方式通常是将数据导入至专门的数据分析工具中,这样会面临两个问题:1.如果源数据非常大时,往往数据的移动就要花费较长时间.2.传统的数据处理工具往往是单机模型,面对海量数据时,数据处理的时间也是一个很大…
如今随着环境的改变,物联网.AI.大数据.人工智能等,是未来的大趋势,而大数据是这些基石,万物互联,机器学习都是大数据应用场景! 为什么要学习大数据?我们JAVA到底要不要转型大数据? 好比问一个程序员为什么要学编程! 大数据技术是未来科技的必备技能,在外行看来大数据就是噱头,华而不实,对于大数据技术来说"先是看不见,再是看不上,最后是跟不上".做技术的一定要跟上时代,做精当下,看见未来! 大数据,人工智能,可以说绝对是未来十年社会发展的风向标.生存法则变了, 你再不懂这些就彻底晚了!…
众所周知,很多语言技术已经在长久的历史发展中掩埋,这期间不同的程序员也走出的自己的发展道路. 有的去了解新的发展趋势的语言,了解新的技术,利用自己原先的思维顺利改变自己的title. 比如我自己,也都在往更高的技能走,我认为这是一个很聪明的想法,横向发展,拖宽自己的知识广度,未来或许就能把握更多的机遇! 所以做Java开发,除了Java还可以学什么?如何正确转型大数据,编程语言与大数据的关系? 企业级大数据项目的开发流程是:数据采集 → 数据清洗 → 数据存储 → 数据计算 → 数据分析 → 数…
http://www.csdn.net/article/2014-06-05/2820089 摘要:MapReduce在实时查询和迭代计算上仍有较大的不足,目前,Spark由于其可伸缩.基于内存计算等特点,且可以直接读写Hadoop上任何格式的数据,逐渐成为大数据处理的新宠,腾讯分享了Spark的原理和应用案例. [编者按]MapReduce由于其设计上的约束只适合处理离线计算,在实时查询和迭代计算上仍有较大的不足,而随着业务的发展,业界对实时查询和迭代分析有更多的需求,单纯依靠MapReduc…
众所周知,Apache Flink(以下简称 Flink)最早诞生于欧洲,2014 年由其创始团队捐赠给 Apache 基金会.如同其他诞生之初的项目,它新鲜,它开源,它适应了快速转的世界中更重视的速度与灵活性. 大数据时代对人类的数据驾驭能力提出了新的挑战,Flink 的诞生为企业用户获得更为快速.准确的计算能力提供了前所未有的空间与潜力.作为公认的新一代大数据计算引擎,Flink 究竟以何魅力成为阿里.腾讯.滴滴.美团.字节跳动.Netflix.Lyft 等国内外知名公司建设流计算平台的首选…
9月11日,在腾讯全球数字生态大会大数据专场上,腾讯云大数据产品副总经理雷小平重磅发布了全链路数据开发平台WeData,同时发布和升级了流计算服务.云数据仓库.ES.企业画像等6款核心产品,进一步优化和提升了腾讯云大数据的全托管能力,助力企业从基础设施层.场景开发层以及行业应用层快速构建一站式大数据平台能力. 「 借助WeData,企业数据开发门槛降低60%」 雷小平表示:"构建大数据开发平台是企业数字化转型的关键步骤,然而从数据集成到开发调度等涉及的模块众多,导致整个平台的维护和升级成本非常高…
Storm 实战:构建大数据实时计算(阿里巴巴集团技术丛书,大数据丛书.大型互联网公司大数据实时处理干货分享!来自淘宝一线技术团队的丰富实践,快速掌握Storm技术精髓!) 阿里巴巴集团数据平台事业部商家数据业务部 编著 ISBN 978-7-121-22649-6 2014年8月出版 定价:59.00元 184页 16开 编辑推荐 Storm以其简单.灵活.健壮而著称.随着大数据实时处理需求的强劲增长,Storm的出现填补了大数据处理生态系统的缺失,并被越来越多的公司所采用. <Storm实战…
程学旗先生是中科院计算所副总工.研究员.博士生导师.网络科学与技术重点实验室主任.本次程学旗带来了中国大数据生态系统的基础问题方面的内容分享.大数据的发展越来越快,但是对于大数据的认知大都还停留在最初的阶段——大数据是一类资源.一类工具,其实“大数据”更多的体现的是一个认知和思维,是一种战略.认知和文化. 以下为分享实录全文: 一年多来,通过组织中国大数据技术大会.CCF大数据学术会议以及各类大大小小的应用峰会与学术论坛,结合我们科学院网络数据科学与技术重点实验室所承担的与大数据相关的重大基础课…
> 风起云涌的大数据战场上,早已迎百花齐放繁荣盛景,各大企业加速跑向"大数据时代".而我们作为大数据的践行者,在这个"多智时代"如何才能跟上大数据的潮流,把握住大数据的发展方向. ### 前言 大数据起源于2000年左右,也就是互联网高速发展阶段.经过几年的发展,到2008年 Hadoop 成为 Apache 顶级项目,迎来了大数据体系化的快速发展期,到如今 Hadoop 已不单单指一个软件,而成为了大数据生态体系的代名词. 自2014年以来,国内大数据企业层…
Technorati 标记: hadoop,生态圈,ecosystem,yarn,spark,入门 1. hadoop 生态概况 Hadoop是一个由Apache基金会所开发的分布式系统基础架构. 用户可以在不了解分布式底层细节的情况下,开发分布式程序.充分利用集群的威力进行高速运算和存储. 具有可靠.高效.可伸缩的特点. Hadoop的核心是YARN,HDFS和Mapreduce 下图是hadoop生态系统,集成spark生态圈.在未来一段时间内,hadoop将于spark共存,hadoop与…
阿里巴巴CTO即阿里云负责人王坚博士说过一句话:云计算和大数据,你们都理解错了.   实际上,对于大数据究竟是什么业界并无共识.大数据并不是什么新鲜事物.信息革命带来的除了信息的更高效地生产.流通和消费外,还带来数据的爆炸式增长.“引爆点”到来之后,人们发现原有的零散的对数据的利用造成了巨大的浪费.移动互联网浪潮下,数据产生速度前所未有地加快.人类达成共识开始系统性地对数据进行挖掘.这是大数据的初心.数据积累的同时,数据挖掘需要的计算理论.实时的数据收集和流通通道.数据挖掘过程需要使用的软硬件环…
一. Greenplum简介 大数据是个炙手可热的词,各行各业都在谈.一谈到大数据,好多人认为就是Hadoop.实际上Hadoop只是大数据若干处理方案中的一个.现在的SQL.NoSQL.NewSQL.Hadoop等等,都能在不同层面或不同应用上处理大数据的某些问题.而Greenplum数据库作为一个分布式大规模并行处理数据库(MPP),在大多数情况下,更适合做大数据的存储引擎.计算引擎和分析引擎. Greenplum作为企业级数据库产品,可以说是世界上最先进的OLAP开源数据库之一.Green…
1. Spark rdd生成过程· Spark的任务调度分为四步 1RDD objects RDD的准备阶段,组织RDD及RDD的依赖关系生成大概的RDD的DAG图,DAG图是有向环图. 2DAG scheduler 细分RDD中partition的依赖关系确定那些是宽依赖那些是窄依赖,生成更详细的DAG图,将DAG图封装成 TaskSet任务集合当触发计算时(执行action型算子)将其提交给集群. 3TaskScheduler 接收TaskSet任务集,分析确定那个task对应那个worke…
Hadoop的核心是HDFS和MapReduce,hadoop2.0还包括YARN. Hadoop1.x的生态系统: Hadoop2.x引入YARN: HDFS(Hadoop分布式文件系统)源自于Google的GFS论文,发表于2003年10月,HDFS是GFS克隆版. 是Hadoop体系中数据存储管理的基础.它是一个高度容错的系统,能检测和应对硬件故障,用于在低成本的通用硬件上运行.HDFS简化了文件的一致性模型,通过流式数据访问,提供高吞吐量应用程序数据访问功能,适合带有大型数据集的应用程序…
hadoop是一个由Apache基金会所发布的用于大规模集群上的分布式系统并行编程基础框架.目前已经是大数据领域最流行的开发架构.并且已经从HDFS.MapReduce.Hbase三大核心组件成长为一个具有60多个组件构成的庞大生态,可以满足大数据采集.存储.开发.分析.算法.建模等方方面面. 在hadoop的使用版本中,目前除Apache的版本,hadoop还有Cloudera与Hortonworks公司的两大发行版,并且两家公司还有各自的开分的相关生态组件.管理工具.便于Hadoop集群的供…