[Spark][Python]获得 key,value形式的 RDD [training@localhost ~]$ cat users.txtuser001 Fred Flintstoneuser090 Bugs Bunnyuser111 Harry Potter[training@localhost ~]$ hdfs dfs -put users.txt[training@localhost ~]$ [training@localhost ~]$ [training@localhost ~]…
[Spark][Python][RDD][DataFrame]从 RDD 构造 DataFrame 例子 from pyspark.sql.types import * schema = StructType( [ StructField("age",IntegerType(),True), StructField("name",StringType(),True), StructField("pcode",StringType(),True)…
[Spark][Python][DataFrame][RDD]DataFrame中抽取RDD例子 sqlContext = HiveContext(sc) peopleDF = sqlContext.read.json("people.json") peopleRDD = peopleDF.map(lambda row: (row.pcode,row.name)) peopleRDD.take(5) Out[5]: [(u'94304', u'Alice'),(u'94304', u'…
[Spark][Python][DataFrame][RDD]从DataFrame得到RDD的例子 $ hdfs dfs -cat people.json {"name":"Alice","pcode":"94304"}{"name":"Brayden","age":30,"pcode":"94304"}{"name&…
[Spark][Python]sortByKey 例子的继续 RDD的collect() 作用是什么? “[Spark][Python]sortByKey 例子”的继续 In [20]: mydata004.collect() Out[20]: [[u'00001', u'sku933'], [u'00001', u'sku022'], [u'00001', u'sku912'], [u'00001', u'sku331'], [u'00002', u'sku010'], [u'00003',…
Spark(Python) 从内存中建立 RDD 的例子: myData = ["Alice","Carlos","Frank","Barbara"]myRdd = sc.parallelize(myData)myRdd.take(2) ----In [52]: myData = ["Alice","Carlos","Frank","Barbara"…
由于Scala才刚刚开始学习,还是对python更为熟悉,因此在这记录一下自己的学习过程,主要内容来自于spark的官方帮助文档,这一节的地址为: http://spark.apache.org/docs/latest/quick-start.html 文章主要是翻译了文档的内容,但也在里边加入了一些自己在实际操作中遇到的问题及解决的方案,和一些补充的小知识,一起学习. 环境:Ubuntu 16.04 LTS,Spark 2.0.1, Hadoop 2.7.3, Python 3.5.2, 利用…
一.RDD(弹性分布式数据集) RDD 是 Spark 最核心的数据结构,RDD(Resilient Distributed Dataset)全称为弹性分布式数据集,是 Spark 对数据的核心抽象,也是最关键的抽象,它实质上是一组分布式的 JVM 不可变对象集合,不可变决定了它是只读的,所以 RDD 在经过变换产生新的 RDD 时,原有 RDD 不会改变. 1.1.设计背景 在实际应用中,存在许多迭代式计算,这些应用场景的共同之处是,不同计算阶段之间会重用中间结果,即一个阶段的输出结果会作为下…
周末的任务是更新Learning Spark系列第三篇,以为自己写不完了,但为了改正拖延症,还是得完成给自己定的任务啊 = =.这三章主要讲Spark的运行过程(本地+集群),性能调优以及Spark SQL相关的知识,如果对Spark不熟的同学可以先看看之前总结的两篇文章: [原]Learning Spark (Python版) 学习笔记(一)----RDD 基本概念与命令 [原]Learning Spark (Python版) 学习笔记(二)----键值对.数据读取与保存.共享特性 #####…
摘要: RDD:弹性分布式数据集,是一种特殊集合 ‚ 支持多种来源 ‚ 有容错机制 ‚ 可以被缓存 ‚ 支持并行操作,一个RDD代表一个分区里的数据集RDD有两种操作算子:         Transformation(转换):Transformation属于延迟计算,当一个RDD转换成另一个RDD时并没有立即进行转换,仅仅是记住       了数据集的逻辑操作         Ation(执行):触发Spark作业的运行,真正触发转换算子的计算 本系列主要讲解Spark中常用的函数操作:   …