转载:sigmoid和softmax总结】的更多相关文章

对于分类问题的神经网络最后一层的函数做如下知识点总结: sigmoid和softmax一般用作神经网络的最后一层做分类函数(备注:sigmoid也用作中间层做激活函数): 对于类别数量大于2的分类问题,如果每个类别之间互斥,则选用softmax函数(例如:类别为牡丹花.玫瑰花.菊花),如果每个类别之间有交叉则选用与类别数量相等的sigmoid函数(例如:类别为小孩.大人.男人.女人,此处应该选用4个sigmoid函数): 神经网络最后一层的分类函数直接面临作损失函数的选择: softmax函数的…
二分类下,sigmoid.softmax两者的数学公式是等价的,理论上应该是一样的,但实际使用的时候还是sigmoid好 https://www.zhihu.com/question/295247085 为什么好?其实现在我得到一个确切的答案! 多个sigmoid与一个softmax都可以进行多分类 如果多个类别之间是互斥的,就应该使用softmax,即这个东西只可能是几个类别中的一种. 如果多个类别之间不是互斥的,使用多个sigmoid.比如4个类别人声音乐.舞曲.影视原声.流行歌曲,一首歌曲…
转自:http://blog.csdn.net/u014422406/article/details/52805924 sigmoid函数(也叫逻辑斯谛函数): 引用wiki百科的定义: A logistic function or logistic curve is a common “S” shape (sigmoid curve). 其实逻辑斯谛函数也就是经常说的sigmoid函数,它的几何形状也就是一条sigmoid曲线. logistic曲线如下: 同样,我们贴一下wiki百科对sof…
文章: http://blog.csdn.net/u014422406/article/details/52805924 sigmoid函数(也叫逻辑斯谛函数):  引用wiki百科的定义: A logistic function or logistic curve is a common “S” shape (sigmoid curve). 其实逻辑斯谛函数也就是经常说的sigmoid函数,它的几何形状也就是一条sigmoid曲线. logistic曲线如下:  同样,我们贴一下wiki百科对…
1)sigmoid函数(也叫逻辑斯谛函数):  引用wiki百科的定义: A logistic function or logistic curve is a common “S” shape (sigmoid curve). 其实逻辑斯谛函数也就是经常说的sigmoid函数,它的几何形状也就是一条sigmoid曲线. logistic曲线如下:  2)softmax函数的定义: softmax is a generalization of logistic function that “squ…
代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https://www.cnblogs.com/xiximayou/p/12706576.html 激活函数并没有多少要说的,根据公式定义好就行了,需要注意的是梯度公式的计算. import numpy as np # Collection of activation functions # Referenc…
转载自:https://baijiahao.baidu.com/s?id=1636737136973859154&wfr=spider&for=pc写的很清楚,并举例佐证,容易理解,推荐!…
原文地址:https://www.cnblogs.com/nxf-rabbit75/p/9276412.html 激活函数: 就是在神经网络的神经元上运行的函数,负责将神经元的输入映射到输出端. 常见的激活函数包括Sigmoid.TanHyperbolic(tanh).ReLu. softplus以及softmax函数. 这些函数有一个共同的特点那就是他们都是非线性的函数.那么我们为什么要在神经网络中引入非线性的激活函数呢? 如果不用激励函数(其实相当于激励函数是f(x) = x),在这种情况下…
全文转载自:softmax的log似然代价函数(公式求导) 在人工神经网络(ANN)中,Softmax通常被用作输出层的激活函数.这不仅是因为它的效果好,而且因为它使得ANN的输出值更易于理解.同时,softmax配合log似然代价函数,其训练效果也要比采用二次代价函数的方式好. 1. softmax函数及其求导 softmax的函数公式如下: 其中,表示第L层(通常是最后一层)第j个神经元的输入,表示第L层第j个神经元的输出,表示自然常数.注意看,表示了第L层所有神经元的输入之和. softm…
https://blog.csdn.net/danyhgc/article/details/73850546 什么是激活函数 为什么要用 都有什么 sigmoid ,ReLU, softmax 的比较 如何选择 1. 什么是激活函数 如下图,在神经元中,输入的 inputs 通过加权,求和后,还被作用了一个函数,这个函数就是激活函数 Activation Function. 2. 为什么要用 如果不用激励函数,每一层输出都是上层输入的线性函数,无论神经网络有多少层,输出都是输入的线性组合.如果使…
softmax用于多分类过程中,它将多个神经元的输出,映射到(0,1)区间内,可以看成概率来理解,从而来进行多分类! 他把一些输入映射为0-1之间的实数,并且归一化保证和为1,因此多分类的概率之和也刚好为1. 实际应用中,使用 Softmax 需要注意数值溢出的问题.因为有指数运算,如果 V 数值很大,经过指数运算后的数值往往可能有溢出的可能.所以,需要对 V 进行一些数值处理:即 V 中的每个元素减去 V 中的最大值. 相应的python示例代码如下: scores = np.array([1…
http://www.jianshu.com/p/75f7e60dae95 作者:陈迪豪 来源:CSDNhttp://dataunion.org/26447.html 交叉熵介绍 交叉熵(Cross Entropy)是Loss函数的一种(也称为损失函数或代价函数),用于描述模型预测值与真实值的差距大小,常见的Loss函数就是均方平方差(Mean Squared Error),定义如下.   ​平方差很好理解,预测值与真实值直接相减,为了避免得到负数取绝对值或者平方,再做平均就是均方平方差.注意这…
1. MNIST数据集 1.1 概述 Tensorflow框架载tensorflow.contrib.learn.python.learn.datasets包中提供多个机器学习的数据集.本节介绍的是MNIST数据集,其功能都定义在mnist.py模块中. MNIST是一个入门级的计算机视觉数据集,它包含各种手写数字图片: 图 11 它也包含每一张图片对应的标签,告诉我们这个是数字几.比如,上面这四张图片的标签分别是5,0,4,1 1.2 加载 有两种方式可以获取MNIST数据集: 1) 自动下载…
一个可扩展的深度学习框架的Python实现(仿keras接口) 动机 keras是一种非常优秀的深度学习框架,其具有较好的易用性,可扩展性.keras的接口设计非常优雅,使用起来非常方便.在这里,我将仿照keras的接口,设计出可扩展的多层感知机模型,并在多维奇偶校验数据上进行测试. 本文实现的mlp的可扩展性在于:可以灵活指定神经网络的层数,每层神经元的个数,每层神经元的激活函数,以及指定神经网络的损失函数 本文将尽量使用numpy的矩阵运算用于训练网络,公式的推导过程可以参考此篇博客,细节上…
之前在一次组会上,师弟诉苦说他用 UNet 处理一个病灶分割的任务,但效果极差,我看了他的数据后发现,那些病灶区域比起整张图而言非常的小,而 UNet 采用的损失函数通常是逐像素的分类损失,如此一来,网络只要能够分割出大部分背景,那么 loss 的值就可以下降很多,自然无法精细地分割出那些细小的病灶.反过来想,这其实类似于正负样本极不均衡的情况,网络拟合了大部分负样本后,即使正样本拟合得较差,整体的 loss 也已经很低了. 发现这个问题后,我就在想可不可以先用 Faster RCNN 之类的先…
手写数字识别问题 图像识别是深度学习众多主流应用之一,手写数字识别则是图像识别范畴简化版的入门学习经典案例.在TensorFlow的官方文档中,把手写数字识别"MNIST"案例称为机器学习项目的"Hello World".从这个案例开始,我们的连载才开始有了一些"人工智能"的感觉. 问题的描述是这样: 有一批手写数字的图片,对应数字0-9.通过机器学习的算法,将这些图片对应到文本字符0-9.用通俗的话来说,就是计算机认出了图片上面手写的数字. 从…
一.词汇表征 首先回顾一下之前介绍的单词表示方法,即one hot表示法. 如下图示,"Man"这个单词可以用 \(O_{5391}\) 表示,其中O表示One_hot.其他单词同理. 但是这样的表示方法有一个缺点,看是看下图中右侧给出的例子,比如给出这么一句不完整的话: **I want a glass of orange ___** 假设通过LSTM算法学到了空白处应该填"juice".但是如果将orange改成apple,即 **I want a glass…
Net# 是由 Microsoft 开发的一种用于定义神经网络体系结构的语言. 使用 Net# 定义神经网络的结构使定义复杂结构(如深层神经网络或任意维度的卷积)变得可能,这些复杂结构被认为可提高对数据的学习,如映像.音频或视频. 在下列上下文中,可以使用 Net# 体系结构规范: Microsoft Azure 机器学习工作室中的所有网络模块:多类神经网络.两类神经网络和神经网络回归 MicrosoftML 中的神经网络函数:R 语言的 NeuralNet 和 rxNeuralNet,以及 P…
1. 定义 激励函数通常用于隐藏层,是将特征值进行过滤或者激活的算法 2.常见的激励函数 1. sigmoid (1)sigmoid() (2)ultra_fast_sigmoid() (3)hard_sigmoid() 2. others (1) softplus() (2)softmax() (3)relu() (4)binary_crossentropy() (5)categorical_crossentropy() (6)h_softmax() 3. 应用场景 (1)隐藏层:relu,…
nnet3/nnet-common.h 定义了Index,(n, t, x)三元组,表示第n个batch中第t帧. 并声明了关于Index或Cindex的一些读写操作.     nnet3/nnet-nnet.h 声明了NetworkNode(主要包含其类型以及索引信息) 声明了Nnet(nnet3网络类) private: //网络中的组件名列表 std::vector<std::string> component_names_; //网络中实际的组件指针列表,同一组件可能出现多次 std:…
除了chain,nnet1, nnet2, nnet3训练时调整转移模型,chain模型使用类似与MMI的训练准则 概要 Karel Vesely的nnet1用到以下技术: 每一层进行预训练,基于RBMs(受限玻尔滋蔓机) 以一帧为单位进行交叉熵训练 序列-辨别性训练,用了lattice框架,以sMBR准则作为优化标准(状态的最小贝叶斯风险) early stopping using a validation 系统是建立在LDA-MLLT-fMLLR特征(从辅助的GMM模型中得到)之上的.整个D…
转自 http://blog.csdn.net/xingzhedai/article/details/53144126 更多参考:http://blog.csdn.net/mafeiyu80/article/details/51446558 http://blog.csdn.net/caimouse/article/details/70225998 http://kubicode.me/2017/05/15/Deep%20Learning/Understanding-about-RNN/ RNN…
目录 一.引言 1.什么是.为什么需要深度学习 2.简单的机器学习算法对数据表示的依赖 3.深度学习的历史趋势 最早的人工神经网络:旨在模拟生物学习的计算模型 神经网络第二次浪潮:联结主义connectionism 神经网络的突破 二.线性代数 1. 标量.向量.矩阵和张量的一般表示方法 2. 矩阵和向量的特殊运算 3. 线性相关和生成子空间 I. 方程的解问题 II. 思路 III. 结论 IV.求解方式 4. 范数norm I. 定义和要求 II. 常用的\(L^2\)范数和平方\(L^2\…
上一篇博客先搭建了基础环境,并熟悉了基础知识,本节基于此,再进行深一步的学习. 接下来看看如何基于PyTorch深度学习框架用简单快捷的方式搭建出复杂的神经网络模型,同时让模型参数的优化方法趋于高效.如同使用PyTorch中的自动梯度方法一样,在搭建复杂的神经网络模型的时候,我们也可以使用PyTorch中已定义的类和方法,这些类和方法覆盖了神经网络中的线性变换.激活函数.卷积层.全连接层.池化层等常用神经网络结构的实现.在完成模型的搭建之后,我们还可以使用PyTorch提供的类型丰富的优化函数来…
前馈神经网络(Feedforward Neural Network,简称FNN),也叫多层感知机(Multilayer Perceptron,简称MLP).FNN的目标是通过学习参数θ,得到最佳的函数y=f(x;θ),例如分类器,输入x,输出类别y. 1.前馈 也叫前向,信息单向流动,从输入层到隐藏层(hidden layer),再从隐藏层到输出层,不存在从下一层到上一层的反向流动.有反馈(feedback)连接的叫做循环神经网络.卷积神经网络是一种特殊的前馈神经网络.  2.反向传播(back…
一.Training of a Single-Layer Neural Network 1 Delta Rule Consider a single-layer neural network, as shown in Figure 2-11. In the figure, d i is the correct output of the output node i. Long story short, the delta rule adjusts the weight as the follow…
Iris Classification on Tensorflow Neural Network formula derivation \[ \begin{align} a & = x \cdot w_1 \\ y & = a \cdot w_2 \\ & = x \cdot w_1 \cdot w_2 \\ y & = softmax(y) \end{align} \] code (training only) \[ a = x \cdot w_1 \\ y = a \c…
简介 这里的生成式网络是广义的生成式,不仅仅指gan网络,还有风格迁移中的类自编码器网络,以及语义分割中的类自编码器网络,因为遇到次数比较多,所以简单的记录一下. 背景 1.像素和数字 图像处理目标一般就是RGB三色通道,原始图像解码后是0~255,这个矩阵传给matplotlib就可以直接绘图了,与此同0~1的图像matplotlib也是可以接受的,关于这点,我们来看看文档是怎么说的, Elements of RGB and RGBA arrays represent pixels of an…
tf.trainable_variables()  返回的是 所有需要训练的变量列表 tf.all_variables() 返回的是 所有变量的列表 v = tf.Variable(0, name='v') v1 = tf.Variable(tf.constant(5, shape=[1], dtype=tf.float32), name='v1') global_step = tf.Variable(6, name='global_step', trainable=False) # 声明不是训…
dense layer:mnist识别中,需要十组dense权重矩阵来计算这十个输出内容,conv矩阵每一个元素乘以另一个矩阵的元素并相加,得到一个值,最后加上sigmoid(softmax在二元情况下就是sihgmoid)得到一个值. 什么时候需要在conv后加max pooling--未知why需要max pooling?(1)max..具有平移不变性(2)max..后,意味着3*3卷积有效覆盖了更大部分的原始图像,也就意味着我们的卷积能够找到更多.更复杂的特征capsule胶囊的结构 SG…