Zero-shot Recognition via semantic embeddings and knowledege graphs   2018-03-31  15:38:39  [Abstract] 我们考虑 zero-shot recognition 的问题:学习一个类别的视觉分类器,并且不用 training data,仅仅依赖于 类别的单词映射(the word embedding of the category)及其与其他类别的关系(its relationship to othe…
摘要 1.作者提出了一种新的简单有效的方法,用于学习词义嵌入word sense embedding 2.传统的两种方法:(1)直接从语料库中学习词义:(2)依赖词汇资源的语义库 研究方法的创新点:通过聚类相关词的自我网络ego-networks,从而在现有的词嵌入中引出语义库. 3.集成的WSD机制允许在学习到的语义向量的上下文中标记单词,从而产生下游应用 4.这种新式方法能够与现有的无监督WSD系统相媲美 介绍 在NLP应用中,密集向量形式的术语表示是非常有用的.首先,它们能计算语义相关的单…
基于神经模型的半监督词义消歧 Dayu Yuan  Julian Richardson  Ryan Doherty  Colin Evans  Eric Altendorf Google, Mountain View CA, USA 摘要 确定文本中词语的意图 - 词义消歧(WSD) - 是自然语言处理中长期存在的问题. 最近,研究人员使用从神经网络语言模型中提取的单词向量作为WSD算法的特征,显示了有希望的结果. 但是,文本中每个单词的单词向量的简单平均或串联会丢失文本的顺序和句法信息. 在本…
论文阅读笔记 Word Embeddings A Survey 收获 Word Embedding 的定义 dense, distributed, fixed-length word vectors, built using word co-occurrence statistics as per the distributional hypothesis. 分布式假说(distributional hypothesis) word with similar contexts have the…
参考 1. Word Representation 之前介绍用词汇表表示单词,使用one-hot 向量表示词,缺点:它使每个词孤立起来,使得算法对相关词的泛化能力不强. 从上图可以看出相似的单词分布距离较近,从而也证明了Word Embeddings能有效表征单词的关键特征. 2. 词嵌入(word embedding) Transfer learning and word embedding: 从海量词汇库中学习word embeddings(即所有单词的特征向量),或者从网上下载预训练好的w…
<基于WEB的独立学院补考重修管理系统研究>论文笔记(1) 一.基本信息 标题:基于WEB的独立学院补考重修管理系统研究 时间:2016 来源:南通大学杏林学院 关键词:WEB:补考重修管理系统 二.研究内容 1.独立学院补考重修管理系统的关键技术: 为保证系统的先进性和稳定性,补考重修管理系统采用了面向对象的设计方法,运用 J2EE 作为技术平台.sql server 2008 数据库作为数据平台.使用 B/S运行模式,建成一个完整统一.技术先进.高效稳定.安全可靠的基于 WEB 的补考重修…
第二周 自然语言处理与词嵌入(Natural Language Processing and Word Embeddings) 2.1 词汇表征(Word Representation) 词汇表示,目前为止一直都是用词汇表来表示词,上周提到的词汇表,可能是 10000 个单词,我们一直用 one-hot 向量来表示词.这种表示方法的一大缺点就是它把每个词孤立起来,这样使得算法对相关词的泛化能力不强. 换一种表示方式会更好,如果不用 one-hot 表示,而是用特征化的表示来表示每个词,man,w…
Deep Learning论文笔记之(八)Deep Learning最新综述 zouxy09@qq.com http://blog.csdn.net/zouxy09 自己平时看了一些论文,但老感觉看完过后就会慢慢的淡忘,某一天重新拾起来的时候又好像没有看过一样.所以想习惯地把一些感觉有用的论文中的知识点总结整理一下,一方面在整理过程中,自己的理解也会更深,另一方面也方便未来自己的勘察.更好的还可以放到博客上面与大家交流.因为基础有限,所以对论文的一些理解可能不太正确,还望大家不吝指正交流,谢谢.…
第二周 自然语言处理与词嵌入(Natural Language Processing and Word Embeddings) 词汇表征(Word Representation) 上周我们学习了 RNN.GRU 单元和 LSTM 单元.本周你会看到我们如何把这些知识用到 NLP 上,用于自然语言处理,深度学习已经给这一领域带来了革命性的变革.其中一个很关键的概念就是词嵌入(word embeddings),这是语言表示的一种方式,可以让算法自动的理解一些类似的词,比如男人对女人,比如国王对王后,…
1. Word representation One-hot representation的缺点:把每个单词独立对待,导致对相关词的泛化能力不强.比如训练出“I want a glass of orange juice”后,面对“I want a glass of apple          ”,由于任何两个不同单词的one-hot vector的内积都为0,算法不知道orange和apple是一类词,所以没办法泛化出在apple后面填“juice”. Featurized represent…