基于tensorflow的简单线性回归模型】的更多相关文章

#!/usr/local/bin/python3 ##ljj [1] ##linear regression model import tensorflow as tf import matplotlib.pyplot as plt #训练样本,随手写的 x_ = [11,14,22,29,32,40,44,55,59,60,69,77] y_res = [123,135,155,167,177,189,200,240,250,255,277,298] #初始化定义w和b,都为1,这里折腾了一会…
一.机器学习基本概念 1.训练集和测试集 训练集(training set/data)/训练样例(training examples): 用来进行训练,也就是产生模型或者算法的数据集 测试集(testing set/data)/测试样例 (testing examples):用来专门进行测试已经学习好的模型或者算法的数据集 2.特征向量 特征向量(features/feature vector):属性的集合,通常用一个向量来表示,附属于一个实例 3.分类问题和回归问题 分类 (classific…
本节将针对波士顿房价数据集的房间数量(RM)采用简单线性回归,目标是预测在最后一列(MEDV)给出的房价. 波士顿房价数据集可从http://lib.stat.cmu.edu/datasets/boston处获取. 本小节直接从 TensorFlow contrib 数据集加载数据.使用随机梯度下降优化器优化单个训练样本的系数. 实现简单线性回归的具体做法 导入需要的所有软件包: 在神经网络中,所有的输入都线性增加.为了使训练有效,输入应该被归一化,所以这里定义一个函数来归一化输入数据: 现在使…
https://medium.com/towards-data-science/lstm-by-example-using-tensorflow-feb0c1968537 在深度学习中,循环神经网络(RNN)是一系列善于从序列数据中学习的神经网络.由于对长期依赖问题的鲁棒性,长短期记忆(LSTM)是一类已经有实际应用的循环神经网络.现在已有大量关于 LSTM 的文章和文献,其中推荐如下两篇: Goodfellow et.al.<深度学习>一书第十章:http://www.deeplearnin…
TensorFlow 可以用来实现验证码识别的过程,这里识别的验证码是图形验证码,首先用标注好的数据来训练一个模型,然后再用模型来实现这个验证码的识别. 生成验证码 首先生成验证码,这里使用 Python 的 captcha 库来生成即可,这个库默认是没有安装的,所以需要先安装这个库,另外还需要安装 pillow 库,使用 pip3 即可: pip3 install captcha pillow 安装好之后,就可以用如下代码来生成一个简单的图形验证码了: from captcha.image i…
原文作者:aircraft 原文地址:https://www.cnblogs.com/DOMLX/p/8954892.html 参考博客:https://blog.csdn.net/u012871279/article/details/78037984 https://blog.csdn.net/u014380165/article/details/77284921 目前人工智能神经网络已经成为非常火的一门技术,今天就用tensorflow来实现神经网络的第一块敲门砖. 首先先分模块解释代码.…
版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/marsjhao/article/details/67042392 神经网络可以用来模拟回归问题 (regression),实质上是单输入单输出神经网络模型,例如给下面一组数据,用一条线来对数据进行拟合,并可以预测新输入 x 的输出值. 一.详细解读 我们通过这个简单的例子来熟悉Keras构建神经网络的步骤: 1.导入模块并生成数据 首先导入…
# -*- coding: utf-8 -*- import tensorflow as tf import numpy as np import matplotlib.pyplot as plt def real_func(): return def emperor(): num_points = 1000 vectors_set = [] for i in range(num_points): x1 = np.random.normal(0.0, 0.55) y1 = x1 * 0.1 +…
import cv2 as cvimport tensorflow as tfimport numpy as npimport random ##以下为数据预处理,分类为cata,总共样本为cata*num_batch,总共图像为cata*num_imgcata=2 #需要分的类别num_img=49 #图像个数#该函数返回x与y,输入批量,产生cata*num_batchdef XANDY(num_batch): x_mouse=np.zeros([num_batch,500,500,1])…
在 TensorFlow 实现简单线性回归的基础上,可通过在权重和占位符的声明中稍作修改来对相同的数据进行多元线性回归. 在多元线性回归的情况下,由于每个特征具有不同的值范围,归一化变得至关重要.这里是波士顿房价数据集的多重线性回归的代码,使用 13 个输入特征. 波士顿房价数据集可从http://lib.stat.cmu.edu/datasets/boston处获取. 多元线性回归的具体实现 导入需要的所有软件包:   因为各特征的数据范围不同,需要归一化特征数据.为此定义一个归一化函数.另外…