[笔记] 兰道定理 Landau's Theorem】的更多相关文章

兰道定理的内容: 一个竞赛图强连通的充要条件是:把它的所有顶点按照入度d从小到大排序,对于任意\(k\in [0,n-1]\)都不满足\(\sum_{i=0}^k d_i=\binom{k+1}{2}\). 兰道定理的证明: 引理: 一个竞赛图强连通的充要条件是对于任意\(S \subsetneq 点集V\),都存在一个点\(u \notin S\),满足u到S有边. 证明: 1.必要性:比较显然 2.充分性:假设我们现在已经得到了\(V\)中的一个强连通子集\(S\),想办法不断扩展\(S\)…
题目 本题需要用到的结论: 一.兰道定理 二.如果\(n\geq4\),那么\(n\)个点的强连通竞赛图存在\(n-1\)个点的强连通子图. 证明: 现在有一个n-1个点的竞赛图(不一定强连通,称其为原图),加入n号点,得到的n个点的竞赛图是强连通的.将原图强连通分量分解,按照拓扑序排好,称为\(a_0 \cdots a_k\)(一共k个强连通分量).现在考虑证明加入n号点后的图,删掉某一个点后一定可以得到强连通图. k=1:去掉n号点即可. \(k \geq 3\):原图是长成这样的(不太准确…
http://acm.hdu.edu.cn/showproblem.php?pid=5873 题意: 现在有比赛,所有队伍两两进行比赛,赢的积2分,输的积0分,如果平局的话就各自都积1分,现在给出每只队伍的得分情况,判断是否合法. 思路: 竞赛图中有关于得分序列这方面的知识,这里引用一下来自http://blog.csdn.net/a_crazy_czy/article/details/73611366博主的讲解. 那么,对于这道题目来说,首先对所有得分排个序,再依次处理即可,前i只队伍的得分情…
[笔记] 扩展\(Lucas\)定理 \(Lucas\)定理:\(\binom{n}{m} \equiv \binom{n/P}{m/P} \binom{n \% P}{m \% P}\pmod{P}\)\((P\ is \ prime)\) Theory 那么如果\(p\)不是一个质数怎么办? 当我们需要计算\(C_n^m\mod p\),其中\(p = p_1^{q_1}\times p_2^{q_2}\times ...\times p_k^{q_k}\),我们可以求出:\(C_n^m\e…
Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Academia.edu) Summary Standard Error The standard error of a random variable $X$ is defined by $$SE(X)=\sqrt{E((X-E(X))^2)}$$ $SE$ measures the rough size…
笔者经多番周折终于看懂了\(\text{Burnside}\)定理和\(\text{Polya}\)定理,特来写一篇学习笔记来记录一下. 群定义 定义:群\((G,·)\)是一个集合与一个运算·所定义的群.它所需要满足的性质是: 结合律:对于任意\(a,b,c\in G,a·b·c=a·(b·c).\) 封闭性:对于任意\(a,b\in G,a·b\in G.\) 单位元:存在\(e\in G,a·e=a.\) 逆元:\(\forall a\in G,\exists a'\in G,a·a'=a…
可以先做这个题[SDOI2010]古代猪文 此算法和LUCAS定理没有半毛钱关系. [模板]扩展卢卡斯 不保证P是质数. $C_n^m=\frac{n!}{m!(n-m)!}$ 麻烦的是分母. 如果互质就有逆元了. 所以可以考虑把分子分母不互质的数单独提出来处理. 然鹅P太一般,直接处理要考虑的东西太多. 我们不妨令$p=p_1^{q_1}*p_2^{q_2}*...*p_k^{q_k}$ 对每一个$p_i^{q_i}$分别求解(不妨叫这个数为$pk$)(这样会容易很多) 即求ai满足:$\fr…
1. 问题 Karatsuba 大整数的快速乘积算法的运行时间(时间复杂度的递推关系式)为 T(n)=O(n)+4⋅T(n/2),求其最终的时间复杂度. 2. 主定理的内容 3. 分析 所以根据主定理的判别方法,可知对于 T(n)=O(n)+4⋅T(n/2),a=4,b=2,则 f(n)=O(n)<nlogab=2,符合第一个判别式,因此,T(n)=O(n2)…
图染色问题的经典结论 定义 称一个边染色方案合法当且仅当每个顶点连出的所有边的颜色都互不相同,如果此时出现了 \(k\) 个颜色那么称该方案是图的一组 \(k\) 染色 一张无向图的边着色数为最小的 \(k\) 满足图可以 \(k\) 边染色,但不存在一个 \(k-1\) 边染色方案,记图 \(G\) 的边色数为 \(\chi'(G)\) 同时记 \(\Delta(G)\) 为图上的最大度数 \(\rm{Vizing}\) 定理: 如果满足 \(G\) 是二分图,那么 \(\chi'(G)=\D…
一.前置概念 接下来的这些定义摘自 置换群 - OI Wiki. 1. 群 若集合 \(s\neq \varnothing\) 和 \(S\) 上的运算 \(\cdot\) 构成的代数结构 \((S,\cdot)\) 满足一下性质: 封闭性:\(\forall a,b\in S,a\cdot b\in S\). 结合律:\(\forall a,b,c\in S,(a\cdot b)\cdot c=a\cdot (b\cdot c)\). 单位元:\(\exists e\in S,\forall…