BP算法细节 参数说明:假设有n层.J表示代价函数,和上面的E是同样的意思,只不过用不同的字母写而已. 分析:要想知道第l层的第i个结点的残差,必须知道层已经计算出来了残差,你只要把后面一层的每个结点j的残差乘以该结点与这一层的结点i相连的权值,然后加和,最后别忘了乘以这一层的激活方式的导数. 最后说明一点,BP传播,计算各层的各点的残差是关键,残差是总的代价函数对于该点的net的偏导,从倒数第二层开始,求残差就要用到其后面的一层的各个残差,只要用后面一层的各个结点残差乘以其与这一层这个的结点所…
转载:火烫火烫的 个人觉得BP反向传播是深度学习的一个基础,所以很有必要把反向传播算法好好学一下 得益于一步一步弄懂反向传播的例子这篇文章,给出一个例子来说明反向传播 不过是英文的,如果你感觉不好阅读的话,优秀的国人已经把它翻译出来了. 一步一步弄懂反向传播的例子(中文翻译) 然后我使用了那个博客的图片.这次的目的主要是对那个博客的一个补充.但是首先我觉得先用面向过程的思想来实现一遍感觉会好一点. 随便把文中省略的公式给大家给写出来.大家可以先看那篇博文 import numpy as np #…
完整代码及其数据,请移步小编的GitHub 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/MachineLearningNote 在数据挖掘方面,经常需要在做特征工程和模型训练之前对数据进行清洗,剔除无效数据和异常数据.异常检测也是数据挖掘的一个方向,用于反作弊,伪基站,金融欺诈等领域. 在之前已经学习了异常检测算法One Class SVM和 isolation  Forest算法,博文如下: Python机器学习笔记:异常点检测算法--One…
这里把按 [1] 推导的BP算法(Backpropagation)步骤整理一下.突然想整理这个的原因是知乎上看到了一个帅呆了的求矩阵微分的方法(也就是 [2]),不得不感叹作者的功力.[1] 中直接使用矩阵微分的记号进行推导,整个过程十分简洁.而且这种矩阵形式有一个非常大的优势就是对照其进行编程实现时非常方便. 但其实用标量计算推导也有一定的好处,比如可以清楚地知道某个权重是被谁所影响的. 前向传播过程:多层Logistic回归 记号约定: $L$:神经网络的层数.输入层不算. $n^l$:第…
先看下面信号流图,L=2和M0=M1=M2=M3=3的情况,上面是前向通过,下面部分是反向通过. 1.初始化.假设没有先验知识可用,可以以一个一致分布来随机的挑选突触权值和阈值,这个分布选择为均值等于0的均匀分布,它的方差选择应该使得神经元的诱导局部域的标准偏差位于sigmoid激活函数的线行部分与饱和部分过渡处. (1)训练样本的呈现.呈现训练样本的一个回合给网络.对训练集中以某种形式排序的每个样本,一次进行下面的第3点和第4点中所描述的前向和反向计算. (2)前向计算.在该回合中设一个训练样…
知识回顾 1:首先引入一些便于稍后讨论的新标记方法: 假设神经网络的训练样本有m个,每个包含一组输入x和一组输出信号y,L表示神经网络的层数,S表示每层输入的神经元的个数,SL代表最后一层中处理的单元个数. 之前,我们所讲到的,我们可以把神经网络的定义分为2类: 1)二元分类:SL = 1,其中y = 1 或 0 2)多元分类:当有K中分类时候,SL = K,其中yi = 1表示分到第i类(k>2) 2:再让我们回顾之前所讲到的逻辑回归问题中的代价函数 在逻辑回归中,我们只有一个输出变量,但是再…
上一章的神经网络实际上是前馈神经网络(feedforward neural network),也叫多层感知机(multilayer perceptron,MLP).具体来说,每层神经元与下一层神经元全互联,神经元之间不存在同层或跨层连接:输入层神经元仅接受外界输入,不进行函数处理:隐藏层与输出层包含功能神经元,对信号进行加工:最终结果由输出层神经元输出.“前馈”是说网络拓补结构上不存在环路或回路,而不是指网络信号不能向后传递. 前向传播(FP) 所谓前向传播,就是根据一些列包含偏置项的权重矩阵Θ…
课程笔记 Coursera—Andrew Ng机器学习—课程笔记 Lecture 9_Neural Networks learning 作业说明 Exercise 4,Week 5,实现反向传播 backpropagation神经网络算法, 对图片中手写数字 0-9 进行识别. 数据集 :ex4data1.mat.手写数字图片数据,5000个样例.每张图片20px * 20px,也就是一共400个特征.数据集X维度为5000 * 400 ex4weights.mat.神经网络每一层的权重. 文件…
往期回顾 100天搞定机器学习|(Day1-36) 100天搞定机器学习|Day37无公式理解反向传播算法之精髓 上集我们学习了反向传播算法的原理,今天我们深入讲解其中的微积分理论,展示在机器学习中,怎么理解链式法则. 我们从一个最简单的网络讲起,每层只有一个神经元,图上这个网络就是由三个权重和三个偏置决定的,我们的目标是理解代价函数对这些变量有多敏感.这样我们就知道怎么调整这些变量,才能使代价函数下降的最快. 我们先来关注最后两个神经元,我们给最后一个神经元一个上标L,表示它处在第L层.给定一…
BP算法为深度学习中参数更新的重要角色,一般基于loss对参数的偏导进行更新. 一些根据均方误差,每层默认激活函数sigmoid(不同激活函数,则更新公式不一样) 假设网络如图所示: 则更新公式为: 以上列举了最后2层的参数更新方式,第一层的更新公式类似,即上一层的误差来自于下一层所有的神经元,e的更新就是不断建立在旧的e上(这里g可以当做初始的e) 下面上代码: 1,BP算法 # 手写BP算法 import numpy as np # 先更新参数,再继续传播 # layers:包括从输入层到输…