[LeetCode]杨辉三角 II】的更多相关文章

119. 杨辉三角 II 给定一个非负索引 k,其中 k ≤ 33,返回杨辉三角的第 k 行. 在杨辉三角中,每个数是它左上方和右上方的数的和. 示例: 输入: 3 输出: [1,3,3,1] 进阶: 你可以优化你的算法到 O(k) 空间复杂度吗? PS: 获取杨辉三角的指定行 直接使用组合公式C(n,i) = n!/(i!*(n-i)!) 则第(i+1)项是第i项的倍数=(n-i)/(i+1); class Solution { public List<Integer> getRow(int…
119.杨辉三角 II 描述 给定一个非负索引 k,其中 k ≤ 33,返回杨辉三角的第 k 行. 在杨辉三角中,每个数是它左上方和右上方的数的和. 示例 输入: 3 输出: [1,3,3,1] 进阶: 你可以优化你的算法到 O(k) 空间复杂度吗? 思路 不同于上一题, 这里我们仅仅需要得到的第 k 层的集合, 但只能使用 O(k) 的空间. 所以不能用前面二维数组的方式, 只能使用一维数组滚动计算. 在第一题里面, 我们知道, 帕斯卡三角的计算公式是: A[k][n] = A[k-1][n-…
Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3,Return [1,3,3,1]. Note:Could you optimize your algorithm to use only O(k) extra space? 118. Pascal's Triangle 的拓展,给一个索引k,返回杨辉三角的第k行. 解法:题目要求优化到 O(k) 的空间复杂,那么就不能把每…
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题思路 方法一: 空间复杂度 O ( k ∗ ( k + 1 ) / 2 ) O(k * (k + 1) / 2) O(k∗(k+1)/2) 方法二:空间复杂度 O ( k ) O(k) O(k) 刷题心得 日期 [LeetCode] 题目地址:[https://leetcode.com/problems/pascals-triangle-ii/][1] T…
Easy! 题目描述: 给定一个非负索引 k,其中 k ≤ 33,返回杨辉三角的第 k 行. 在杨辉三角中,每个数是它左上方和右上方的数的和. 示例: 输入: 3 输出: [1,3,3,1] 进阶: 你可以优化你的算法到 O(k) 空间复杂度吗? 解题思路: 杨辉三角想必大家并不陌生,应该最早出现在初高中的数学中,其实就是二项式系数的一种写法. 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21…
问题描述 给定一个非负索引 k,其中 k ≤ 33,返回杨辉三角的第 k 行. 在杨辉三角中,每个数是它左上方和右上方的数的和. 示例: 输入: 3 输出: [1,3,3,1] 进阶: 你可以优化你的算法到 O(k) 空间复杂度吗? 解决方案 class Solution: def getRow(self, rowIndex): """ :type rowIndex: int :rtype: List[int] """ row = [1] for…
公众号:爱写bug(ID:icodebugs) 作者:爱写bug 给定一个非负索引 k,其中 k ≤ 33,返回杨辉三角的第 k 行. Given a non-negative index k where k ≤ 33, return the kth index row of the Pascal's triangle. Note that the row index starts from 0. 在杨辉三角中,每个数是它左上方和右上方的数的和. In Pascal's triangle, ea…
Given a non-negative index k where k ≤ 33, return the kth index row of the Pascal's triangle. Note that the row index starts from 0. In Pascal's triangle, each number is the sum of the two numbers directly above it. Example: Input: 3 Output: [1,3,3,1…
题目描述 给定一个非负索引 k,其中 k ≤ 33,返回杨辉三角的第 k 行. 在杨辉三角中,每个数是它左上方和右上方的数的和. 示例: 输入: 3 输出: [1,3,3,1] 贴出代码 class Solution { public List<Integer> getRow(int rowIndex) { List<Integer> list = new ArrayList<>(); if(rowIndex < 0) return list; list.add(…
给定一个非负索引 k,其中 k ≤ 33,返回杨辉三角的第 k 行. 在杨辉三角中,每个数是它左上方和右上方的数的和. 示例: 输入: 3 输出: [1,3,3,1] 进阶: 你可以优化你的算法到 O(k) 空间复杂度吗? class Solution { public List<Integer> getRow(int rowIndex) { List<Integer> res = new ArrayList<Integer>(); for (int i = 0;i&l…