传送门 \(d=1\),那么任何时刻都可以\(k\)个复读机的一种,答案为\(k^n\) \(d>1\),可以枚举某个复读机的复读次数(必须是\(d\)的倍数),然后第\(i\)个复读时间为\(x_i\),那么答案为\(n!\sum\limits_{d|x_i,\sum x_i=n} \prod \frac{1}{x_i!}\),这个显然可以暴力背包生成函数,因为有\(d|x_i\)的限制,那么可以套用单位根反演,单个复读机的生成函数为\(\sum_{i=0}^{\infty}[d|i]\fra…
LINK:小Z的礼物 太精髓了 我重学了一遍min-max容斥 重写了一遍按位或才写这道题的. 还是期望多少时间可以全部集齐. 相当于求出 \(E(max(S))\)表示最后一个出现的期望时间. 根据min-max容斥 显然有 \(E(max(S))=\sum_{T\subseteq S}(-1)^{|T|+1}E(min(T))\) 对于这道题 要求出所有的T 直接\(2^{cnt}\)枚举不太现实. 但是我们仍要对每个集合求出其概率. 考虑从矩阵上进行dp来进行压缩状态 那么因为一个格子的选…
传送门 好迷啊--膜一下ljz 考虑每个操作,如果把操作按先后顺序放到序列上的话,操作一就是把\(w_i\)的石子放到某个节点,那么就是在序列末端加入\(w_i\),然后根据贪心肯定要把它所有儿子的石子拿走,也就是要减去\(\sum w_{son}\) 那么每个点的答案就是序列的最大前缀 因为父亲节点的操作一要在儿子之后进行,很麻烦,那么可以每次在自己这里把\(w_i\)减掉,到父亲的时候再加回去 记\((x,y)\)为一个二元组,\(x\)表示当前位置的最大前缀和,\(y\)表示最小后缀和,然…
#418. [集训队作业2018]三角形 和三角形没有关系 只要知道儿子放置的顺序,就可以直接模拟了 记录历史最大值 用一个pair(a,b):之后加上a个,期间最大值为增加b个 合并? A1+A2=(a1+a2,max(b1,a1+b2)) 放置顺序考虑贪心 比较: A放在B前面(和父亲进行合并)当且仅当(C=A+B).b<(D=B+A).b 分A.a和B.a的正负进行讨论 初始的pair:(w[x]-∑w[son[x]],w[x])把儿子会都扔掉 初始的pair放进堆里,取n-1次,和父亲合…
UOJ #449. [集训队作业2018]喂鸽子 小Z是养鸽子的人.一天,小Z给鸽子们喂玉米吃.一共有n只鸽子,小Z每秒会等概率选择一只鸽子并给他一粒玉米.一只鸽子饱了当且仅当它吃了的玉米粒数量\(≥k\). 小Z想要你告诉他,期望多少秒之后所有的鸽子都饱了. 假设答案的最简分数形式为\(\frac{a}{b}\),你需要求出\(w\),满足\(a≡b⋅w \pmod{998244353}(0≤w<998244353).\) \(n\leq 50,k\leq 1000\) Orz 首先可以用\(…
[UOJ#450][集训队作业2018]复读机(生成函数,单位根反演) 题面 UOJ 题解 似乎是\(\mbox{Anson}\)爷的题. \(d=1\)的时候,随便怎么都行,答案就是\(k^n\). \(d=2\)的时候,可以做一个\(dp\),设\(f[i][j]\)表示前\(i\)个复读机选了\(j\)个时间的方案数. 然后枚举当前这个复读机复读的次数,得到: \[f[x][j]=\sum_{i=0}^{j}[2|i]{n-j+i\choose i}f[x-1][j-i]\] 化简啥的之后…
[UOJ#422][集训队作业2018]小Z的礼物(min-max容斥,轮廓线dp) 题面 UOJ 题解 毒瘤xzy,怎么能搬这种题当做WC模拟题QwQ 一开始开错题了,根本就不会做. 后来发现是每次任意覆盖相邻的两个,那么很明显就可以套\(min-max\)容斥. 要求的就是\(max(All)\),而每个集合的\(min\)是很好求的. 如果直接暴力枚举集合复杂度就是\(2^{cnt}cnt\). 仔细想想每个子集我们要知道的是什么,只需要知道子集大小来确定前面的容斥系数,还需要知道覆盖子集…
题目链接: [集训队作业2018]蜀道难 题目大意:给出一棵$n$个节点的树,要求给每个点赋一个$1\sim n$之内的权值使所有点的权值是$1\sim n$的一个排列,定义一条边的权值为两端点权值差的绝对值,要求对于任意两点间的路径要么路径上所有点的点权单调,要么存在路径上的第三个点到这两个点的路径分别单调(即两点间路径先单调递增再单调递减或先单调递减再单调递增).求出整棵树最小边权和,并支持动态插入点之后完成上述问题. 前言: 这道题综合性比较强且代码量及细节非常多,是迄今为止我做过最神仙的…
http://uoj.ac/problem/418 题解 考虑激活每个节点时,它的每个儿子都是放满的. 那每一次的操作我们可以用一个二元组来表示\((w_i-\sum w_{son},\sum w_{son})\). 表示这一次操作完后的增量和这次操作中石子数达到的峰值. 那么一个节点被操作当且仅当它的所有儿子都被操作. 这样很不好处理,所以我们把整个操作序列倒过来,这样限制一个点的只有他的父亲. 那么二元组会变成:\((\sum w_{son}-w_i,\sum w_{son})\),我们还是…
#428. [集训队作业2018]普通的计数题 模型转化好题 所以变成统计有标号合法的树的个数. 合法限制: 1.根标号比子树都大 2.如果儿子全是叶子,数量B中有 3.如果存在一个儿子不是叶子,数量A中有 然后考虑DP 直接枚举根的儿子的情况 cdq分治NTT还是很恶心的 不光是自己卷自己,还是互相卷 进行一番化简和平移之后,可以转化为cdq分治NTT的形式: 怎么好做怎么来. 反正我最后推的式子有如下特点(式子就不写了): 为了方便,钦定g[0],f[0],g[1],f[1]都是0 对于f,…