Machine Learning No.4: Regularization】的更多相关文章

欠拟合(Underfitting)与过拟合(Overfitting) 上面两张图分别是回归问题和分类问题的欠拟合和过度拟合的例子.可以看到,如果使用直线(两组图的第一张)来拟合训,并不能很好地适应我们的训练集,这就叫欠拟合(Underfitting),但是如果x的次数太高(两组图的第三张),拟合虽然很好,但是预测能力反而变差了,这就是过拟合(Overfitting). 对于欠拟合,我们可以适当增加特征,比如加入x的多次方.通常这很少发生,发生的多的都是过拟合.那么如何处理过度拟合呢? 1. 丢弃…
1. Underfit = High bias Overfit = High varience 2. Addressing overfitting: (1) reduce number of features. Manually select which features to keep. Model selection algorithm disadvantage: throw out some useful information (2) Regularization Keep all th…
Logistic regression is a method for classifying data into discrete outcomes. For example, we might use logistic regression to classify an email as spam or not spam. In this module, we introduce the notion of classification, the cost function for logi…
coursera上面Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 我曾经使用Logistic Regression方法进行ctr的预测工作,因为当时主要使用的是成型的工具,对该算法本身并没有什么比较深入的认识,不过可以客观的感受到Logistic Regression的商用价值. Logistic Regression Model A. objective function       其中z的定义域是(-I…
Regularization method(正则化方法) Outline Overview of Regularization L0 regularization L1 regularization L2 regularization Elastic Net regularization L2,1 regularization Model example Reference Overview of Regularization Main goal: 1. Prevent over-fitting…
此文是斯坦福大学,机器学习界 superstar - Andrew Ng 所开设的 Coursera 课程:Machine Learning 的课程笔记. 力求简洁,仅代表本人观点,不足之处希望大家探讨. 课程网址:https://www.coursera.org/learn/machine-learning/home/welcome Week 2:Linear Regression with Multiple Variables笔记:http://blog.csdn.net/ironyoung…
machine learning(13) --Regularization:Regularized linear regression Gradient descent without regularization                    with regularization                     θ0与原来是的没有regularization的一样 θ1-n和原来相比会稍微变小(1-αλ⁄m)<1 Normal equation without regular…
In recent years, Kernel methods have received major attention, particularly due to the increased popularity of the Support Vector Machines. Kernel functions can be used in many applications as they provide a simple bridge from linearity to non-linear…
Machine Learning Algorithms Study Notes 高雪松 @雪松Cedro Microsoft MVP 本系列文章是Andrew Ng 在斯坦福的机器学习课程 CS 229 的学习笔记. Machine Learning Algorithms Study Notes 系列文章介绍 3 Learning Theory 3.1 Regularization and model selection 模型选择问题:对于一个学习问题,可以有多种模型选择.比如要拟合一组样本点,…
Machine Learning Algorithms Study Notes 高雪松 @雪松Cedro Microsoft MVP 本系列文章是Andrew Ng 在斯坦福的机器学习课程 CS 229 的学习笔记. Machine Learning Algorithms Study Notes 系列文章介绍 2    Supervised Learning    3 2.1    Perceptron Learning Algorithm (PLA)    3 2.1.1    PLA --…