Spark Streaming的样本demo统计】的更多相关文章

废话不多说,直接上代码 package com.demo; import java.util.List; import java.util.regex.Pattern; import org.apache.log4j.Level; import org.apache.log4j.Logger; import org.apache.spark.SparkConf; import org.apache.spark.api.java.StorageLevels; import org.apache.s…
正文 SparkStreaming的入口是StreamingContext,通过scala实现 一个简单的实时获取数据.代码SparkStreaming官网也可以找到. object SocketDStreamTest { def main(args: Array[String]): Unit = { val conf = new SparkConf().setMaster("local[2]").setAppName("streamTest") val ssc =…
Spark Streaming 进阶与案例实战 1.带状态的算子: UpdateStateByKey 2.实战:计算到目前位置累积出现的单词个数写入到MySql中 1.create table CREATE TABLE `wordcount` ( `word` VARCHAR(50) NOT NULL, `count` INT(11) NOT NULL, PRIMARY KEY (`word`) ) COMMENT='单词统计表' COLLATE='utf8mb4_german2_ci' ENG…
原文链接:Spark Streaming:大规模流式数据处理的新贵 摘要:Spark Streaming是大规模流式数据处理的新贵,将流式计算分解成一系列短小的批处理作业.本文阐释了Spark Streaming的架构及编程模型,并结合实践对其核心技术进行了深入的剖析,给出了具体的应用场景及优化方案. 提到Spark Streaming,我们不得不说一下BDAS(Berkeley Data Analytics Stack),这个伯克利大学提出的关于数据分析的软件栈.从它的视角来看,目前的大数据处…
转自:http://www.csdn.net/article/2014-01-28/2818282-Spark-Streaming-big-data 提到Spark Streaming,我们不得不说一下BDAS(Berkeley Data Analytics Stack),这个伯克利大学提出的关于数据分析的软件栈.从它的视角来看,目前的大数据处理可以分为如以下三个类型. 复杂的批量数据处理(batch data processing),通常的时间跨度在数十分钟到数小时之间. 基于历史数据的交互式…
一.        场景 ◆ Spark[4]: Scope:  a MapReduce-like cluster computing framework designed for low-latency iterativejobs and interactive use from an interpreter(在大规模的特定数据集上的迭代运算或重复查询检索) 正如其目标scope,Spark适用于需要多次操作特定数据集的应用场合.需要反复操作的次数越多,所需读取的数据量越大,受益越大,数据量小…
场景 餐厅老板想要统计每个用户来他的店里总共消费了多少金额,我们可以使用updateStateByKey来实现 从kafka接收用户消费json数据,统计每分钟用户的消费情况,并且统计所有时间所有用户的消费情况(使用updateStateByKey来实现) 数据格式 {"user":"zhangsan","payment":8} {"user":"wangwu","payment":7}…
Spark 1.5.2 Spark Streaming 学习笔记和编程练习 Overview 概述 Spark Streaming is an extension of the core Spark API that enables scalable, high-throughput, fault-tolerant stream processing of live data streams. Data can be ingested from many sources like Kafka,…
1.准备 事先在hdfs上创建两个目录: 保存上传数据的目录:hdfs://alamps:9000/library/SparkStreaming/data checkpoint的目录:hdfs://alamps:9000/library/SparkStreaming/CheckPoint_data ------------------------------------------------------ 2.源码 package stream; import java.util.Arrays;…
一.top3热门商品实时统计案例 1.概述 Spark Streaming最强大的地方在于,可以与Spark Core.Spark SQL整合使用,之前已经通过transform.foreachRDD等算子看到, 如何将DStream中的RDD使用Spark Core执行批处理操作.现在就来看看,如何将DStream中的RDD与Spark SQL结合起来使用. 案例:每隔10秒,统计最近60秒的,每个种类的每个商品的点击次数,然后统计出每个种类top3热门的商品. 2.java案例 packag…