第二次作业:卷积神经网络 part 2】的更多相关文章

DEADLINE: 2020-08-01 22:00 写在最前面: 本周学习的是卷积神经网络,是本课程重点中的重点,大家务必要熟练掌握. 本周的学习任务包括 视频学习 . 代码练习 .论文讲解 三部分. 1. 视频学习 ● 深度学习的数学基础 (下载地址:https://www.jianguoyun.com/p/DStBQ98QrKKIBhis-K4D) 这部分是桑老师给课程加的内容,大家看看,科普下就好,看不太明白也没有关系 有部分同学事已经学过这些视频,可以略过 ● 卷积神经网络 (下载地址…
第二次作业:卷积神经网络 part 1 视频学习 数学基础 受结构限制严重,生成式模型效果往往不如判别式模型. RBM:数学上很漂亮,且有统计物理学支撑,但主流深度学习平台不支持RBM和预训练. 自编码器:正则自编码器.稀疏自编码器.去噪自编码器和变分自编码器. 概率/函数形式统一: 欠拟合.过拟合解决方案: 欠拟合:提高模型复杂度 决策树:拓展分支 神经网络:增加训练轮数 过拟合1:降低模型复杂度 优化目标加正则项 决策树:剪枝 神经网络:early stop.dropout 过拟合2:数据增…
第二次作业:卷积神经网络 part 2 问题总结 输出层激活函数是否有必要? 为什么DnCNN要输出残差图片?图像复原又该如何操作? DSCMR中的J2损失函数效果并不明显,为什么还要引入呢? 代码练习 MobileNet V1 Mobilenet v1是Google于2017年发布的网络架构,旨在充分利用移动设备和嵌入式应用的有限的资源,有效地最大化模型的准确性,以满足有限资源下的各种应用案例. 使用了深度可分离卷积,把标准卷积分解为 depth-wise 和 point-wise 卷积,合起…
一.项目说明 给定数据集train.csv,要求使用卷积神经网络CNN,根据每个样本的面部图片判断出其表情.在本项目中,表情共分7类,分别为:(0)生气,(1)厌恶,(2)恐惧,(3)高兴,(4)难过,(5)惊讶和(6)中立(即面无表情,无法归为前六类).所以,本项目实质上是一个7分类问题. 数据集介绍: (1).CSV文件,大小为28710行X2305列: (2).在28710行中,其中第一行为描述信息,即“label”和“feature”两个单词,其余每行内含有一个样本信息,即共有28709…
模式识别课程的一次作业.其目标是对UCI的手写数字数据集进行识别,样本数量大约是1600个.图片大小为16x16.要求必须使用SVM作为二分类的分类器. 本文重点是如何使用卷积神经网络(CNN)来提取手写数字图片特征,主要想看如何提取特征的请直接看源代码部分的94行左右,只要对tensorflow有一点了解就可以看懂.在最后会有完整的源代码.处理后数据的分享链接.转载请保留原文链接,谢谢. UCI手写数字的数据集 源数据下载:http://oddmqitza.bkt.clouddn.com/ar…
mnist的卷积神经网络例子和上一篇博文中的神经网络例子大部分是相同的.但是CNN层数要多一些,网络模型需要自己来构建. 程序比较复杂,我就分成几个部分来叙述. 首先,下载并加载数据: import tensorflow as tf import tensorflow.examples.tutorials.mnist.input_data as input_data mnist = input_data.read_data_sets("MNIST_data/", one_hot=Tru…
http://m.blog.csdn.net/blog/wu010555688/24487301 本文整理了网上几位大牛的博客,详细地讲解了CNN的基础结构与核心思想,欢迎交流. [1]Deep learning简介 [2]Deep Learning训练过程 [3]Deep Learning模型之:CNN卷积神经网络推导和实现 [4]Deep Learning模型之:CNN的反向求导及练习 [5]Deep Learning模型之:CNN卷积神经网络(一)深度解析CNN [6]Deep Learn…
前言:这只是我的一个学习笔记,里边肯定有不少错误,还希望有大神能帮帮找找,由于是从小白的视角来看问题的,所以对于初学者或多或少会有点帮助吧. 1:人工全连接神经网络和BP算法 <1>:人工神经网络结构与人工神经网络可以完美分割任意数据的原理: 本节图片来源于斯坦福Andrew Ng老师coursea课件(此大神不多介绍,大家都懂) 在说明神经网络之前,先介绍一下神经网络的基础计算单元,感知器. 上图就是一个简单的感知器,蓝色是输入的样本,g(z)是激活函数,z=x1*w1+-,a=g(z) 这…
Hinton第五课 突然不知道object recognition 该翻译成对象识别好,还是目标识别好,还是物体识别好,但是鉴于范围性,还是翻译成对象识别吧.这一课附带了两个论文<Convolutional Networks for Images,Speech,and Time-series>在前面翻译过:http://blog.csdn.net/shouhuxianjian/article/details/40832953和<Gradient-based learning applie…
Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现 zouxy09@qq.com http://blog.csdn.net/zouxy09          自己平时看了一些论文,但老感觉看完过后就会慢慢的淡忘,某一天重新拾起来的时候又好像没有看过一样.所以想习惯地把一些感觉有用的论文中的知识点总结整理一下,一方面在整理过程中,自己的理解也会更深,另一方面也方便未来自己的勘察.更好的还可以放到博客上面与大家交流.因为基础有限,所以对论文的一些理解可能不太正确,还望大家不吝指正…