考虑把树展开,单独把叶子节点拿出来 于是可以把控制点\(x\)的,抽象成是在它叶子节点间连权值为\(c_x\)的边 显然只用在\(x\)子树的最左边的叶子节点和最右边的叶子节点的下一个节点连边(最后一个叶子节点的下一个节点为 \(n+1\)),跑最小生成树即可 正确性证明的话,设叶子节点的权值分别为\(x_1,x_2--x_n\),做差分\(y_i=x_{i+1}-x_i\),显然\(\sum \limits _{i=1}^n y_i =0\) 正确性的话,感性理解一下吧QAQ,有理有据的感性理…
Kruskal算法来构造最小生成树,我总结了分为以下步骤: (1)建图,构造Kruskal边集,边集元素应该包括该边的起始顶点.终止顶点.权值: (2)将边集按权值从小到大的顺序进行排序: (3)从小到大依次从Kruskal边集中取边加入最小生成树集合,判断条件:将该边加入最小生成树集合,与生成树集合中原有的边不构成环: (4)最小生成树集合中元素(构成生成树的边)的个数为原图顶点数-1时,代表最小生成树构造完毕. Kruskal核心伪代码如下: Kruskal(MGragh *Gra) { 对…
c/c++ 用克鲁斯卡尔(kruskal)算法构造最小生成树 最小生成树(Minimum Cost Spanning Tree)的概念: 假设要在n个城市之间建立公路,则连通n个城市只需要n-1条线路.这时,自然会考虑,如何在最节省经费的前提下建立这个公路网络. 每2个城市之间都可以设置一条公路,相应地都要付出一定的经济代价.n个城市之间,最多可以设置n(n-1)/2条线路,那么,如何在这些可能的线路中选择n-1条,以使总的耗费最少? 克鲁斯卡尔(kruskal)算法的大致思路: 把每条边的权重…
c/c++ 用普利姆(prim)算法构造最小生成树 最小生成树(Minimum Cost Spanning Tree)的概念: ​ 假设要在n个城市之间建立公路,则连通n个城市只需要n-1条线路.这时,自然会考虑,如何在最节省经费的前提下建立这个公路网络. ​ 每2个城市之间都可以设置一条公路,相应地都要付出一定的经济代价.n个城市之间,最多可以设置n(n-1)/2条线路,那么,如何在这些可能的线路中选择n-1条,以使总的耗费最少? 普利姆(prim)算法的大致思路: ​ 大致思想是:设图G顶点…
主要参考资料:数据结构(C语言版)严蔚敏   ,http://blog.chinaunix.net/uid-25324849-id-2182922.html   代码测试通过. package 图的建立与实现; import java.util.*; public class MGraph { final int MAXVEX = 100; final int INFINITY = 65535; int[] vexs = new int[MAXVEX]; //顶点表 int[][] arc =…
描述:假设N=(V,{E})是一个连通网,U是顶点集V的一个非空子集.若(u,v)是一条具有最小权值(代价)的边,其中u∈U,v∈V-U,则必存在一棵包含边(u,v)的最小生成树. 证明: 假设网N的任何一棵最小生成树都不包含(u,v).设T是连通网上的一棵最小生成树,当边(u,v)加入到T中时,由生成树的定义,T中必存在一天包含(u,v)的回路.另一方面,由于T是生成树,则在T上必存在另一条边(u’,v’),其中u’∈U,v’∈V-U,且u和u’之间,v和v’之间均有路径相通.删去边(u’,v…
import java.util.ArrayList; import java.util.List; // 模块E public class AdjMatrixGraph<E> { protected SeqList<E> vertexlist; // 顺序表存储图的顶点集合 protected int[][] adjmatrix; // 图的邻接矩阵 二维图 存储的是每个顶点的名称(A,B,C,D....) ; // private final int MAX_WEIGHT = …
题目链接:http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1116 解题报告:一个国家有n个城市,有m条路可以修,修每条路要一定的金币,现在这个国家只有K个金币,每个城市有一些人,要你求怎么修路使得总的费用在K的范围内,同时使得跟首都连接的城市的人口(包括首都的人口)要最多,问最多的人口是多少. 枚举连接哪些城市,然后分别构造最小生成树. #include<cstdio> #include<cstring> #include<…
Description The Head Elder of the tropical island of Lagrishan has a problem. A burst of foreign aid money was spent on extra roads between villages some years ago. But the jungle overtakes roads relentlessly, so the large road network is too expensi…
/* 最小生成树,最小环的最大权值按照排序后去构建最小生成树就可以了,注意遇到的第一个根相同的点就记录权值,跳出,生成的环就是最小权值环. */ //AC代码: #include"iostream" #include"cstdio" #include"cstring" #include"cmath" #include"algorithm" using namespace std; const int MX=…
Prim: 算法步骤: 1.任意结点开始(不妨设为v1)构造最小生成树: 2.首先把这个结点(出发点)包括进生成树里, 3.然后在那些其一个端点已在生成树里.另一端点还未在生成树里的所有边中找出权最小的一条边, 4.并把这条边.包括不在生成树的另一端点包括进生成树, …. 5.依次类推,直至将所有结点都包括进生成树为止 Pascal的渣渣代码... 注:寻找最短的边那一步可以用堆优化,但那样还不如直接用Kruskal...... Reference: http://www.nocow.cn/in…
#include "ljjz.h" typedef struct edgedata /*用于保存最小生成树的边类型定义*/ { int beg,en; /*beg,en是边顶点序号*/ int length; /*边长*/ }edge; /*函数功能:prim算法构造最小生成树 函数参数:图的邻接矩阵g;边向量edge */ ]) { edge x; int d,min,j,k,s,v; /* 建立初始入选点,并初始化生成树边集tree*/ ;v<=g.n-;v++) { tre…
最小生成树的性质 MST性质:设G = (V,E)是连通带权图,U是V的真子集.如果(u,v)∈E,且u∈U,v∈V-U,且在所有这样的边中, (u,v)的权c[u][v]最小,那么一定存在G的一棵最小生成树,(u,v)为其中一条边. 构造最小生成树,要解决以下两个问题: (1).尽可能选取权值小的边,但不能构成回路(也就是环). (2).选取n-1条恰当的边以连接网的n个顶点. Prim算法的思想: 设G = (V,E)是连通带权图,V = {1,2,…,n}.先任选一点(一般选第一个点),首…
Sunny Cup 2003 - Preliminary Round April 20th, 12:00 - 17:00 Problem E: QS Network In the planet w-503 of galaxy cgb, there is a kind of intelligent creature named QS. QScommunicate with each other via networks. If two QS want to get connected, they…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4126 题意:给出一幅3000个点的图,有10000次操作: 求将某条边的权值变大后的最小生成树,最后输出10000次操作得到的最小生成树权值的平均值. 分析: 对于每次询问, 都是将a,b之间的边增加到c, 会出现 两种情况: 1. 如果边权增加的那条边原先就不在最小生成树中,那么这时候的最小生成树的值不变 2. 如果该边在原最小生成树中,那么这时候将增加的边从原最小生成树中去掉,这时候生成树就被分…
通信网络的最小生成树配置,它是使右侧的生成树值并最小化.经常使用Prim和Kruskal算法.看Prim算法:以防万一N={V,{E}}它是在通信网络,TE它是N设置边的最小生成树.从算法U={u0}(uo属于V).TE={}开始,复运行下述操作:在全部u属于U.v属于V-U的边(u,v)属于E中找到代价最小的一条边(u0,v0)并入集合TE,同一时候v0并入U,直至U=V为止.此时TE中必有n-1条边,T={V,{TE}}为N的最小生成树. 为实现此算法,需另设一个辅助数组closedge,以…
相关介绍:  根据树的特性可知,连通图的生成树是图的极小连通子图,它包含图中的全部顶点,但只有构成一棵树的边:生成树又是图的极大无回路子图,它的边集是关联图中的所有顶点而又没有形成回路的边.  一个有n个顶点的连通图的生成树只有n-1条边.若有n个顶点而少于n-1条边,则是非连通图(将其想成有n个顶点的一条链,则其为连通图的条件是至少有n-1条边):若多于n-1条边,则一定形成回路.值得注意的是,有n-1条边的生成子图,并不一定是生成树.此处,介绍一个概念.网:指的是边带有权值的图.  在一个网…
3097: Hash Killer I Time Limit: 5 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 963  Solved: 364[Submit][Status][Discuss] Description 这天天气不错,hzhwcmhf神犇给VFleaKing出了一道题: 给你一个长度为N的字符串S,求有多少个不同的长度为L的子串. 子串的定义是S[l].S[l + 1].... S[r]这样连续的一段. 两个字符串被认为是…
最小生成树: 中文名 最小生成树 外文名 Minimum Spanning Tree,MST 一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边. 最小生成树可以用kruskal(克鲁斯卡尔)算法或prim(普里姆)算法求出. 在一给定的无向图G = (V, E) 中,(u, v) 代表连接顶点 u 与顶点 v 的边(即),而 w(u, v) 代表此边的权重,若存在 T 为 E 的子集(即)且为无循环图,使得 的 w(T) 最小,则…
在边赋权图中,权值总和最小的生成树称为最小生成树.构造最小生成树有两种算法,分别是prim算法和kruskal算法.在边赋权图中,如下图所示: 在上述赋权图中,可以看到图的顶点编号和顶点之间邻接边的权值,若要以上图来构建最小生成树.结果应该如下所示: 这样构建的最小生成树的权值总和最小,为17 在构建最小生成树中,一般有两种算法,prim算法和kruskal算法 在prim算法中,通过加入最小邻接边的方法来建立最小生成树算法.首先构造一个零图,在选一个初始顶点加入到新集合中,然后分别在原先的顶点…
在图论中,树是指无回路存在的连通图.一个连通图的生成树是指包含了所有顶点的树.如果把生成树的边的权值总和作为生成树的权,那么权值最小的生成树就称为最小生成树.因为最小生成树在实际中有很多应用,所以我们有必要了解怎样生成最小生成树.构造最小生成树的两种常用方法:Kruskal算法.Prim算法.本文介绍Kruskal算法,Prim算法在下篇文章中介绍.       Kruskal算法是从另一条途径来求网络的的最小生成树.设G=(V, E)是一个有n个顶点的连通图,则令最小生成树的初值状态为只有n个…
学习最小生成树算法之前我们先来了解下下面这些概念: 树(Tree):如果一个无向连通图中不存在回路,则这种图称为树. 生成树 (Spanning Tree):无向连通图G的一个子图如果是一颗包含G的所有顶点的树,则该子图称为G的生成树.生成树是连通图的极小连通子图.这里所谓极小是指:若在树中任意增加一条边,则将出现一条回路:若去掉一条边,将会使之变成非连通图. 最小生成树(Minimum Spanning Tree,MST):或者称为最小代价树Minimum-cost Spanning Tree…
文字描述 用连通网来表示n个城市及n个城市间可能设置的通信线路,其中网的顶点表示城市,边表示两城市之间的线路,赋于边的权值表示相应的代价.对于n个定点的连通网可以建立许多不同的生成树,每一棵生成树都可以是一个通信网.现在,我们要选择这样一个生成树,使总的耗费最少.这个问题就是构造连通网的最小代价生成树(Minimum Cost Spanning Tree: 最小生成树)的问题.一棵生成树的代价就是树上各边的代价之和. 有多种算法可以构造最小生成树,其他多数都利用的最小生成的MST(minimum…
一.主要内容: 介绍图论中两大经典问题:最小生成树问题以及最短路径问题,以及给出解决每个问题的两种不同算法. 其中最小生成树问题可参考以下题目: 题目1012:畅通工程 http://ac.jobdu.com/problem.php?pid=1012 题目1017:还是畅通工程 http://ac.jobdu.com/problem.php?pid=1017 题目1024:畅通工程 http://ac.jobdu.com/problem.php?pid=1024 题目1028:继续畅通工程 ht…
学习最小生成树算法之前我们先来了解下 下面这些概念: 树(Tree):如果一个无向连通图中不存在回路,则这种图称为树. 生成树 (Spanning Tree):无向连通图G的一个子图如果是一颗包含G的所有顶点的树,则该子图称为G的生成树. 生成树是连通图的极小连通子图.这里所谓极小是指:若在树中任意增加一条边,则将出现一条回路:若去掉一条边,将会使之变成非连通图. 最小生成树(Minimum Spanning Tree,MST):或者称为最小代价树Minimum-cost Spanning Tr…
我们在图的定义中说过,带有权值的图就是网结构.一个连通图的生成树是一个极小的连通子图,它含有图中全部的顶点,但只有足以构成一棵树的n-1条边.所谓的最小成本,就是n个顶点,用n-1条边把一个连通图连接起来,并且使得权值的和最小.综合以上两个概念,我们可以得出:构造连通网的最小代价生成树,即最小生成树(Minimum Cost Spanning Tree). 找连通图的最小生成树,经典的有两种算法,普里姆算法和克鲁斯卡尔算法,这里介绍普里姆算法. 为了能够讲明白这个算法,我们先构造网图的邻接矩阵,…
关于图的几个概念定义:          关于图的几个概念定义: 连通图:在无向图中,若任意两个顶点vi与vj都有路径相通,则称该无向图为连通图. 强连通图:在有向图中,若任意两个顶点vi与vj都有路径相通,则称该有向图为强连通图. 连通网:在连通图中,若图的边具有一定的意义,每一条边都对应着一个数,称为权:权代表着连接连个顶点的代价,称这种连通图叫做连通网. 生成树:一个连通图的生成树是指一个连通子图,它含有图中全部n个顶点,但只有足以构成一棵树的n-1条边.一颗有n个顶点的生成树有且仅有n-…
本节纲要 什么是图(network) 什么是最小生成树 (minimum spanning tree) 最小生成树的算法 什么是图(network)? 这里的图当然不是我们日常说的图片或者地图.通常情况下,我们把图看成是一种由“顶点”和“边”组成的抽象网络.在各个“顶点“间可以由”边“连接起来,使两个顶点间相互关联起来.图的结构可以描述多种复杂的数据对象,应用较为广泛,看下图: 为了更好地说明问题,下面我们看一个比较老套的通信问题: 在各大城市中建设通信网络,如下图所示,每个圆圈代表一座城市,而…
题意 给一个无向加权联通图,没有重边和环.在这个图中可能存在多个最小生成树(MST),你可以进行以下操作:选择某条边使其权值加一,使得MST权值不变且唯一.求最少的操作次数. 分系:首先我们先要知道为什么会出现多个最小生成树的情况? 因为有些边的权值是相同的 , 所以在构造最小生成树的时候 ,我们是可以选择不同的边 , 构造出不同的最小生成树: 如果我们要是生成的最小生成树是唯一的 , 那我们每一次的加边十都只能是一种选择 也就是说,在构造过程的某一次抉择中,如果有多条边,他们的权值均最小,且合…
    库鲁斯卡尔(Kruskal)算法是一种按照连通网中边的权值递增的顺序构造最小生成树的方法.Kruskal算法的基本思想是:假设连通网G=(V,E),令最小生成树的初始状态为只有n个顶点而无边的非连通图T=(V,{}),图中每个顶点自成一个连通分量.在E中选择权值最小的边,若该边依附的顶点落在T中不同的连通分量中,则将此边加入到T中;否则,舍去此边而选下一条权值最小的边;依次类推,直到T中所有顶点都在同一个连通分量上(此时含有n-1边)为止,这时的T就是一棵最小的生成树.     注意,初…