tensorflow 基本内容】的更多相关文章

tensorflow的结构 1.使用图(graphs)来表示计算任务 2.在被称之为会话(Session)的上下文(context)中执行图 3.使用tensor表示数据 4.通过变量(Variable)维护状态 5.使用feed和fetch可以为任意的操作赋值或者从中获取数据 1.基本操作: m1 = tf.constant([[3,3]]) 1行2列   m2 = tf.constant([[2],[3]])   创建常量 product =  tf.matmul(m1,m2)    矩阵乘…
能看到这说明你对python已经有一定的了解了,因此很多基础直接跳过. 一.TensorFlow环境配置: TensorFlow的环境配置在网上很多的教程都是用anaconda的方式,但是很容易出现冲突,而且问题也不是很好解决,因此不建议使用anaconda.建立一个新的pythonvirtual的环境,专门用来做TensorFlow,由于pycharm可以继承于原来的环境,因此有些库也会继承下来,即使没有也可以用pip的指令来完成安装,直接进入python的新建的虚拟环境.输入[pip ins…
既然你已经读到了这篇文章,我就断定你已经开始了你的深度学习之旅了,并且对人造神经网络的研究已经有一段时间了:或者也许你正打算开始你的学习之旅.无论是哪一种情况,你都是因为发现你陷入了困惑中,才找到了这篇文章.你可能查询浏览了各种各样的深度学习的框架和库,但是其中有两个比较突出,他们是两个最流行的深度学习库:TensorFlow 和 PyTorch.你没有办法指出这两个库有什么本质的不同,不用担心!我将在这网络上无休止的存储空间中添加一篇新的文章,也许可以帮你弄清楚一些问题.我将简要的快速的给出你…
(后面内容是本人初次玩GPU时,遇到很多坑的问题总结及尝试解决办法.由于买独立的GPU安装会涉及到设备的兼容问题,这里建议还是购买GPU一体机(比如https://item.jd.com/3964771.html),几行代码就可以顺利安装.---2017.10.04) 电脑配置 Ubuntu 14.04(64位)+GeForce GTX970: 选择安装系统Ubuntu14.04: 可能电脑配置的不同,在我的机子上这里尝试安装Fedora23,Fedora24,Fedora25,Ubuntu 1…
内容来源:Keras 之父讲解 Keras:几行代码就能在分布式环境训练模型 把 Keras API 直接整合入 TensorFlow 项目中,这样能与你的已有工作流无缝结合.至此,Keras 成为了 TensorFlow 内部的一个新模块:tf.keras,它包含完整的 Keras API.用 Keras API 定义模型,用 TensorFlow estimator 和 experiments 在分布式环境训练模型. 我们有一组 10 秒短视频组成的数据集,视频内容是人从事各种活动.一个深度…
Tensorflow dataloader 相关调研:数据读取是训练的开始,是非常关键的一步:下面是调研时搜集到的一些相关链接: 十图详解tensorflow数据读取机制 https://zhuanlan.zhihu.com/p/27238630 TensorFlow全新的数据读取方式:Dataset API入门教程 https://zhuanlan.zhihu.com/p/30751039 tensorflow tf.data: https://tensorflow.google.cn/gui…
本章主要讲关于分类的一些机器学习知识点.我会按照以下关键点来总结自己的学习心得:(本文源码在文末,请自行获取) 什么是MNIST数据集 二分类 二分类的性能评估与权衡 从二元分类到多类别分类 错误分析 多标签分类.多输出分类   什么是MNIST数据集 MNIST数据集是一组由美国高中生和人口调查局员工手写的70,000个数字图片数据集.官方链接为:http://yann.lecun.com/exdb/mnist/ 这组数据集X标签是28*28大小的像素强度数值,y标签是一个该图像对应的一个真实…
请支持正版图书, 购买链接 下方内容里面很多链接需要我们***,请大家自备梯子,实在不会再请留言,节约彼此时间. 源码在底部,请自行获取,谢谢! 当开始着手进行一个端到端的机器学习项目,大致需要以下几个步骤: 观察大局 分析业务,确定工作方向与性能指标 获得数据 借助框架分析数据 机器学习算法的数据准备 选择和训练模型 微调模型 展示解决方案 启动.监控和维护系统 接下来,我将对每一个部分自己的心得进行总结. 一.观察大局 当开始一个真实机器学习项目时,需要针对项目的特点,有针对性进行分析.任何…
代码 i=tf.constant(0,dtype=tf.int32) batch_len=tf.constant(10,dtype=tf.int32) loop_cond = lambda a,b: tf.less(a,batch_len) #yy=tf.Print(batch_len,[batch_len],"batch_len:") yy=tf.constant(0) loop_vars=[i,yy] def _recurrence(i,yy): c=tf.constant(2,d…
TensorFlow模型保存和提取方法 1. tensorflow实现 卷积神经网络CNN:Tensorflow实现(以及对卷积特征的可视化) # 卷积网络的训练数据为MNIST(28*28灰度单色图像) import tensorflow as tf import numpy as np import matplotlib.pyplot as plt from tensorflow.examples.tutorials.mnist import input_data train_epochs…
本章讲决策树 决策树,一种多功能且强大的机器学习算法.它实现了分类和回归任务,甚至多输出任务. 决策树的组合就是随机森林. 本章的代码部分不做说明,具体请到我的GitHub上自行获取. 决策树的每个节点都是一种属性的判断,每个分支是判断结果的输出,是一种监督学习的算法. 决策树的类别有很多,最广泛使用的决策树的生成算法是CART(Classification And Regression Tree). CART: 首先,使用单个特征k和阈值h将训练集分为两个子集.对于上述两个参数的选择,需要经过…
本章在讲支持向量机(Support Vector Machine). 支持向量机,一个功能强大的机器学习模型,能够执行线性或非线性数据的分类.回归甚至异常值检测的任务.它适用于中小型数据集的分类. 线性SVM分类 线性SVM分类大体分为两类,一种叫硬间隔分类,另一种叫软间隔分类.两者间的区别在于是否一定要把数据全部正确分类. SVM分类器的目标可以等价视作为在类别之间拟合最宽的街道的工作.而确定街道的数据点就是分类器的支持向量. SVM对特征的缩放很敏感,因此是否进行特征缩放对于SVM最终的决策…
本章主要讲训练模型的方法. 线性回归模型 闭式方程:直接计算最适合训练集的模型参数 梯度下降:逐渐调整模型参数直到训练集上的成本函数调至最低,最终趋同与第一种方法计算出的参数 首先,给出线性回归模型的预测公式 将上述公式向量化 当公式存在后,我们由于需要最优参数,因此需要成本函数.线性回归模型一般的成本函数是RMSE或者MSE,这里用MSE 然后,开始求优. 1.使用标准方程(闭式解或者叫公式解) 这个变化是根据线性代数中的矩阵求逆以及相关运算求出的一个公式,要注意,这里的X是一个全数据的矩阵,…
本章主要讲述了“集成学习”和“随机森林”两个方面. 重点关注:bagging/pasting.boosting.stacking三个方法. 首先,提出一个思想,如果想提升预测的准确率,一个很好的方法就是用集成的方法.让多种预测器尽可能相互独立,使用不同的算法进行训练.最后以预测器中的预测结果的多数作为最终结果或者将平均概率最高的结果作为最后的结果. 还有没有其他的方法呢,有的. Bagging/Pasting方法:每个预测器使用的算法相同,但是在不同的训练集随机子集上进行训练,采样时将样本放回就…
2015年11月9日,Google发布人工智能系统TensorFlow并宣布开源,同日,极客学院组织在线TensorFlow中文文档翻译.一个月后,30章文档全部翻译校对完成,上线并提供电子书下载,该文档的上线为国内外使用中文学习TensorFlow的工程及研究人员提供了更快的访问速度和更好的阅读体验,助力中国AI技术与世界同步.在线阅读地址为:http://wiki.jikexueyuan.com/project/tensorflow-zh/ 众所周知,人工智能将是未来发展的大方向,从国家到全…
模式识别领域应用机器学习的场景非常多,手写识别就是其中一种,最简单的数字识别是一个多类分类问题,我们借这个多类分类问题来介绍一下google最新开源的tensorflow框架,后面深度学习的内容都会基于tensorflow来介绍和演示 请尊重原创,转载请注明来源网站www.shareditor.com以及原始链接地址 什么是tensorflow tensor意思是张量,flow是流. 张量原本是力学里的术语,表示弹性介质中各点应力状态.在数学中,张量表示的是一种广义的"数量",0阶张量…
用过一段时间的caffe后,对caffe有两点感受:1.速度确实快; 2. 太不灵活了. 深度学习技术一直在发展,但是caffe的更新跟不上进度,也许是维护团队的关系:CAFFE团队成员都是业余时间在维护和更新.导致的结果就是很多新的技术在caffe里用不了,比如RNN, LSTM,batch-norm等.当然这些现在也算是旧的东西了,也许caffe已经有了,我已经很久没有关注caffe的新版本了.它的不灵活之处就是新的东西很难自己扩展,只能等版本更新,这就比较尴尬. 因此,只学caffe一个工…
人工智能系统Google开源的TensorFlow官方文档中文版 2015年11月9日,Google发布人工智能系统TensorFlow并宣布开源,机器学习作为人工智能的一种类型,可以让软件根据大量的数据来对未来的情况进行阐述或预判.如今,领先的科技巨头无不在机器学习下予以极大投入.Facebook.苹果.微软,甚至国内的百度.Google 自然也在其中.「TensorFlow」是 Google 多年以来内部的机器学习系统.如今,Google 正在将此系统成为开源系统,并将此系统的参数公布给业界…
圣诞节玩的有点嗨,差点忘记更新.祝大家昨天圣诞节快乐,再过几天元旦节快乐. 来继续学习,在/home/your_name/TensorFlow/cifar10/ 下新建文件夹cifar10_train,用来保存训练时的日志logs,继续在/home/your_name/TensorFlow/cifar10/ cifar10.py中输入如下代码: def train(): # global_step global_step = tf.Variable(0, name = 'global_step'…
本资料是在Ubuntu14.0.4版本下进行,用来进行图像处理,所以只介绍关于图像处理部分的内容,并且默认TensorFlow已经配置好,如果没有配置好,请参考官方文档配置安装,推荐用pip安装.关于配置TensorFlow,官方已经说得很详细了,我这里就不啰嗦了.官方教程看这里:https://www.tensorflow.org/get_started/os_setup 如果安装了GPU版本的TensorFlow,还需要配置Cuda,关于Cuda安装看这里:https://www.tenso…
上一篇装好了tensorflow的运行环境,开始尝试运行一些实例代码,在github上找到了一个tensorflow实现的facenet的代码,还是遇到了很多坑! 坚持看完,有重要总结! 代码:https://github.com/davidsandberg/facenet clone完毕后, 直接运行validate_on_lfw.py ,接下来就是一堆坑! 可能是新装的Ubuntu, 里面缺少太多东西了, 先装了多少东西基本不记得了, 起码还要安装好这两个: apt-get install…
TensorFlow深度学习,一篇文章就够了 2016/09/22 · IT技术 · TensorFlow, 深度学习 分享到:6   原文出处: 我爱计算机 (@tobe迪豪 )    作者: 陈迪豪,就职小米科技,深度学习工程师,TensorFlow代码提交者. TensorFlow深度学习框架 Google不仅是大数据和云计算的领导者,在机器学习和深度学习上也有很好的实践和积累,在2015年年底开源了内部使用的深度学习框架TensorFlow. 与Caffe.Theano.Torch.MX…
一文学会用 Tensorflow 搭建神经网络 本文转自:http://www.jianshu.com/p/e112012a4b2d 字数2259 阅读3168 评论8 喜欢11 cs224d-Day 6: 快速入门 Tensorflow 本文是学习这个视频课程系列的笔记,课程链接是 youtube 上的,讲的很好,浅显易懂,入门首选, 而且在github有代码,想看视频的也可以去他的优酷里的频道找. Tensorflow 官网 神经网络是一种数学模型,是存在于计算机的神经系统,由大量的神经元相…
    TensorFlow 入门 本文转自:http://www.jianshu.com/p/6766fbcd43b9 字数3303 阅读904 评论3 喜欢5 CS224d-Day 2: 在 Day 1 里,先了解了一下 NLP 和 DP 的主要概念,对它们有了一个大体的印象,用向量去表示研究对象,用神经网络去学习,用 TensorFlow 去训练模型,基本的模型和算法包括 word2vec,softmax,RNN,LSTM,GRU,CNN,大型数据的 seq2seq,还有未来比较火热的研究…
使用 TensorFlow, 你必须明白 TensorFlow: 使用图 (graph) 来表示计算任务. 在被称之为 会话 (Session) 的上下文 (context) 中执行图. 使用 tensor 表示数据. 通过 变量 (Variable) 维护状态. 使用 feed 和 fetch 可以为任意的操作(arbitrary operation) 赋值或者从其中获取数据. 综述 TensorFlow 是一个编程系统, 使用图来表示计算任务. 图中的节点被称之为 op (operation…
原文链接: https://medium.com/@camrongodbout/tensorflow-in-a-nutshell-part-one-basics-3f4403709c9d#.31jv5ekoy 学习世界上最流行的深度学习框架的最快最简单的教程 (其实这个系列写的差强人意,但是的确是学习tensflow精简的教程,比较适合新手入门,高手请绕行--------译者注) tensorflow是google公司推出的深度学习框架.深度学习是一类采用多层神经网络的机器学习算法.深度学习的思…
笔者将和大家分享一个结合了TensorFlow和最近发布的slim库的小应用,来实现图像分类.图像标注以及图像分割的任务,围绕着slim展开,包括其理论知识和应用场景. 之前自己尝试过许多其它的库,比如Caffe.Matconvnet.Theano和Torch等.它们各有优劣,而我想要一个可靠灵活的.自带预训练模型的python库.最近,新推出了一款名叫slim的库,slim自带了许多预训练的模型,比如ResNet.VGG.Inception-ResNet-v2(ILSVRC的新赢家)等等.这个…
TensorFlow是Google开发的进行Deep Learning的包,目前只是支持在Linux和OSX上运行.不过这个秋季或许就有支持Windows的版本出现了,那么对于使用Windows的开发人员呢,想用TensorFlow也不必等到秋季或转到Linux和OSX系统.在Windows上运行有两种方式,一种是安装虚拟机并且安装Ubuntu系统,在Ubuntu系统上安装TensorFlow,具体步骤可以在Google官网上找到:https://www.tensorflow.org/versi…
转载请注明作者:梦里风林 Github工程地址:https://github.com/ahangchen/GDLnotes 欢迎star,有问题可以到Issue区讨论 官方教程地址 视频/字幕下载 加载数据 使用text8作为训练的文本数据集 text8中只包含27种字符:小写的从a到z,以及空格符.如果把它打出来,读起来就像是去掉了所有标点的wikipedia. 直接调用lesson1中maybe_download下载text8.zip 用zipfile读取zip内容为字符串,并拆分成单词li…
Convolutional Networks 转载请注明作者:梦里风林 Github工程地址:https://github.com/ahangchen/GDLnotes 欢迎star,有问题可以到Issue区讨论 官方教程地址 视频/字幕下载 deep dive into images and convolutional models Convnet BackGround 人眼在识别图像时,往往从局部到全局 局部与局部之间联系往往不太紧密 我们不需要神经网络中的每个结点都掌握全局的知识,因此可以…