iso data 聚类算法】的更多相关文章

isodata算法就是先拟定一个预期类,再选取一些聚类中心,通过不断合并或者分裂聚类,达到分类的目的 关键就是在于,如何分裂,合并 要合并或者分裂 必须要确定一些指标 所以第一步就是要确定 某些指标 1.设置参数, a,确定样本 {xn}  , b,设置一个预期的分类数C, c,确定聚类中心的个数Nc,(Nc不一定要等于C) d ,确定每一个类最少数目 e,每个类样本维度的分量维度的标准差 f,类间最小距离 g 合并分裂次数 2.观察样本点与拟定聚类中心的关系 样本点{Xn} 与聚类中心{Nc}…
转载请标明出处:http://www.cnblogs.com/tiaozistudy/p/twostep_cluster_algorithm.html 两步聚类算法是在SPSS Modeler中使用的一种聚类算法,是BIRCH层次聚类算法的改进版本.可以应用于混合属性数据集的聚类,同时加入了自动确定最佳簇数量的机制,使得方法更加实用.本文在学习文献[1]和“IBM SPSS Modeler 15 Algorithms Guide”的基础上,融入了自己的理解,更详尽地叙述两步聚类算法的流程和细节.…
K-Means 概念定义: K-Means 是一种基于距离的排他的聚类划分方法. 上面的 K-Means 描述中包含了几个概念: 聚类(Clustering):K-Means 是一种聚类分析(Cluster Analysis)方法.聚类就是将数据对象分组成为多个类或者簇 (Cluster),使得在同一个簇中的对象之间具有较高的相似度,而不同簇中的对象差别较大. 划分(Partitioning):聚类可以基于划分,也可以基于分层.划分即将对象划分成不同的簇,而分层是将对象分等级. 排他(Exclu…
K-均值聚类算法 聚类是一种无监督的学习算法,它将相似的数据归纳到同一簇中.K-均值是因为它可以按照k个不同的簇来分类,并且不同的簇中心采用簇中所含的均值计算而成. K-均值算法 算法思想 K-均值是把数据集按照k个簇分类,其中k是用户给定的,其中每个簇是通过质心来计算簇的中心点. 主要步骤: 随机确定k个初始点作为质心 对数据集中的每个数据点找到距离最近的簇 对于每一个簇,计算簇中所有点的均值并将均值作为质心 重复步骤2,直到任意一个点的簇分配结果不变 具体实现 from numpy impo…
K-means聚类算法 算法优缺点: 优点:容易实现缺点:可能收敛到局部最小值,在大规模数据集上收敛较慢使用数据类型:数值型数据 算法思想 k-means算法实际上就是通过计算不同样本间的距离来判断他们的相近关系的,相近的就会放到同一个类别中去. 1.首先我们需要选择一个k值,也就是我们希望把数据分成多少类,这里k值的选择对结果的影响很大,Ng的课说的选择方法有两种一种是elbow method,简单的说就是根据聚类的结果和k的函数关系判断k为多少的时候效果最好.另一种则是根据具体的需求确定,比…
http://www.cnblogs.com/zhangchaoyang/articles/2200800.html http://blog.csdn.net/qll125596718/article/details/6895291 BIRCH(Balanced Iterative Reducing and Clustering using Hierarchies)天生就是为处理超大规模(至少要让你的内存容不下)的数据集而设计的,它可以在任何给定的内存下运行.关于BIRCH的更多特点先不介绍,我…
版权声明:<—— 本文为作者呕心沥血打造,若要转载,请注明出处@http://blog.csdn.net/gamer_gyt <—— 目录(?)[+] ====================================================================== 本系列博客主要参考 Scikit-Learn 官方网站上的每一个算法进行,并进行部分翻译,如有错误,请大家指正 转载请注明出处 ======================================…
K-means聚类算法采用的是将N*P的矩阵X划分为K个类,使得类内对象之间的距离最大,而类之间的距离最小. 使用方法:Idx=Kmeans(X,K)[Idx,C]=Kmeans(X,K) [Idx,C,sumD]=Kmeans(X,K) [Idx,C,sumD,D]=Kmeans(X,K) […]=Kmeans(…,’Param1’,Val1,’Param2’,Val2,…) 各输入输出参数介绍: X N*P的数据矩阵K 表示将X划分为几类,为整数Idx N*1的向量,存储的是每个点的聚类标号…
眼下,SPARK在大数据处理领域十分流行.尤其是对于大规模数据集上的机器学习算法.SPARK更具有优势.一下初步介绍SPARK在linux中的部署与使用,以及当中聚类算法的实现. 在官网http://spark.apache.org/上直接下载编译好的tar安装包能够加快部署速度. spark的执行依赖于scala2.10.4,注意此版本号一定要正确,否则spark不能正确执行. 1.scala的安装非常easy.在官网http://www.scala-lang.org上下载安装包,解压到随意路…
原文请戳:http://blog.csdn.net/abcjennifer/article/details/8170687 聚类算法是ML中一个重要分支,一般采用unsupervised learning进行学习,本文根据常见聚类算法分类讲解K-Means, K-Medoids, GMM, Spectral clustering,Ncut五个算法在聚类中的应用. Clustering Algorithms分类 1. Partitioning approach: 建立数据的不同分割,然后用相同标准…