Surf算法是一把牛刀,我们可以很轻易的从网上或各种Opencv教程里找到Surf的用例,把例程中的代码或贴或敲过来,满心期待的按下F5,当屏幕终于被满屏花花绿绿的小圆点或者N多道连接线条霸占时,内心的民族自豪感油然而生,仿佛屠龙宝刀在手,屁颠屁颠的很开心. 如果对Surf的探究或者使用到此为止,我觉得只是用Surf这把牛刀吓唬了一个小鸡仔,万里长征才刚刚开始第一步,最少有三个问题需要得到解答: 1. 保存特征点信息的keyPoints向量内每个元素包含有哪些内容? 2. 通过comput方法生…
Opencv中Surf算子提取特征,生成特征描述子,匹配特征的流程跟Sift是完全一致的,这里主要介绍一下整个过程中需要使用到的主要的几个Opencv方法. 1. 特征提取 特征提取使用SurfFeatureDetector类中的detect方法,先定义一个SurfFeatureDetector类的对象,通过对象调用detect方法就可以提取输入图像的Surf特征.可以使用不带参数的默认构造函数构建SurfFeatureDetector对象,也可以使用含参数的构造函数: CV_WRAP SURF…
在OpenCV 2.0中使用: IplImage * ipl1, *ipl2; // ... const cv::Mat m = cv::Mat(ipl,false); cv::Mat m2 = ipl2; 在OpenCV 3.0中: IplImage * ipl = ...; cv::Mat m = cv::cvarrToMat(ipl);…
Opencv中Mat矩阵相乘——点乘.dot.mul运算详解 2016年09月02日 00:00:36 -牧野- 阅读数:59593 标签: Opencv矩阵相乘点乘dotmul 更多 个人分类: OpenCV 所属专栏: OpenCV从入门到转行   版权声明:本文为博主原创文章,转载请注明出处. https://blog.csdn.net/dcrmg/article/details/52404580 Mat矩阵点乘——A*B Opencv重载了运算符“*”,姑且称之为Mat矩阵“点乘”,其中…
ORBSLAM2中使用ORB描述子的方法 经典的视觉SLAM系统大体分为两种:其一是基于特征点法的,其二是基于直接法的.那么本文主要就讲特征点法的SLAM. 基于特征点法的视觉SLAM系统典型的有PTAM,ORBSLAM等.本文主要围绕ORBSLAM2的方案来阐述特征点法SLAM,因为ORBSLAM2可以说是特征点法SLAM的巅峰之作.ORBSLAM2采用三个主要线程:跟踪,局部建图和闭环以及一个额外线程:全局BA,该线程只有在闭环时才会触发.值得注意的是,ORBSLAM2中每个模块中都采用OR…
opencv中图像的格式Mat 有图像的定义,图像深度.类型格式等,其中Mat的参数depth为深度,深度反应出图像颜色像素值: 关于数据的储存:(转) Mat_<uchar>对应的是CV_8U,Mat_<char>对应的是CV_8S,Mat_<int>对应的是CV_32S,Mat_<float>对应的是CV_32F,Mat_<double>对应的是CV_64F,对应的数据深度如下: • CV_8U - 8-bit unsigned intege…
data: uchar类型的指针,指向Mat数据矩阵的首地址.可以理解为标示一个房屋的门牌号: dims: Mat矩阵的维度,若Mat是一个二维矩阵,则dims=2,三维则dims=3,大多数情况下处理的都是二维矩阵,是一         个平面上的矩阵. 可以理解为房屋是一个一层的平房,三维或更多维的则是多层楼房: rows: Mat矩阵的行数.可理解为房屋内房间行数: cols: Mat矩阵的列数.可理解为房屋内房间列数: size(): 首先size是一个结构体,定义了Mat矩阵内数据的分…
Abstract摘要本文提出了一种从图像中提取特征不变性的方法,该方法可用于在对象或场景的不同视图之间进行可靠的匹配(适用场景和任务).这些特征对图像的尺度和旋转不变性,并且在很大范围的仿射失真.3d视点的变化.噪声的增加和光照的变化中提供了鲁棒的匹配.从某种意义上说,一个单一的特征可以与来自许多图像的特征的大型数据库进行高概率的正确匹配.本文还介绍了一种利用这些特征进行目标识别的方法.识别的过程是使用快速最近邻算法将单个特征与来自已知对象的特征数据库相匹配,然后进行hough变换以识别属于单个…
Surf(Speed Up Robust Feature) Surf算法的原理                                                                            1.构建Hessian矩阵构造高斯金字塔尺度空间 其实surf构造的金字塔图像与sift有很大不同,就是因为这些不同才加快了其检测的速度.Sift采用的是DOG图像,而surf采用的是Hessian矩阵行列式近似值图像.Hessian矩阵是Surf算法的核心,为了方便运…
SURF原理详解:https://wenku.baidu.com/view/2f1e4d8ef705cc1754270945.html SURF算法工作原理 选择图像中的POI(Points of interest) Hessian Matrix 在不同的尺度空间发现关键点,非最大信号压制 发现特征点方法.旋转不变性要求 生成特征向量 SURF构造函数介绍 C++:  SURF::SURF( double hessianThreshold, --阈值检测器使用Hessian的关键点,默认值在 3…
Binary Robust Independent Elementary Features www.cnblogs.com/ronny 1. BRIEF的基本原理 我们已经知道SIFT特征采用了128维的特征描述子,由于描述子用的浮点数,所以它将会占用512 bytes的空间.类似地,对于SURF特征,常见的是64维的描述子,它也将占用256bytes的空间.如果一幅图像中有1000个特征点(不要惊讶,这是很正常的事),那么SIFT或SURF特征描述子将占用大量的内存空间,对于那些资源紧张的应用…
一.Brief算法 1.基本原理 BRIEF是2010年的一篇名为<BRIEF:Binary Robust Independent Elementary Features>的文章中提出,Brief为特征描述子,对已检测到的特征点进行描述,是一种二进制编码描述子,摒弃了区域灰度直方图描述特征点的传统方法,加快特征描述子建立速度,降低特征匹配时间.因为需要事先得到特征点的位置,可以利用Fast特征点检测算法或Harris角点检测算法或者SIFT.Surf等算法检测特征点的位置,接下来利用特征点邻域…
之前写过一遍关于学习surf算法的blog:http://blog.csdn.net/sangni007/article/details/7482960 但是代码比较麻烦,而且其中还涉及到flann算法(其中的Random KDTree+KNN),虽然能看明白,但是比较费劲,今天在文档中找到一个简化版本: 1.SurfFeatureDetector detector( minHessian );构造surf检测器: detector.detect( img_1, keypoints_1 ); d…
SIFT算法:DoG尺度空间生产  SIFT算法:KeyPoint找寻.定位与优化 SIFT算法:确定特征点方向  SIFT算法:特征描述子 目录: 1.确定描述子采样区域 2.生成描述子 2.1 旋转图像至主方向 2.2 生成特征向量 3.归一化特征向量 附:SIFT开源代码集 1 确定描述子采样区域 SIFI 描述子h(x, y, θ)是对特征点附近邻域内高斯图像梯度统计结果的一种表示,它是一个三维的阵列,但通常将它表示成一个矢量.矢量是通过对三维阵列按一定规律进行排列得到的.特征描述子与特…
简介 BRIEF是2010年的一篇名为<BRIEF:Binary Robust Independent Elementary Features>的文章中提出,BRIEF是对已检测到的特征点进行描述,它是一种二进制编码的描述子,摈弃了利用区域灰度直方图描述特征点的传统方法,大大的加快了特征描述符建立的速度,同时也极大的降低了特征匹配的时间,是一种非常快速,很有潜力的算法. BRIEF具体算法 由于BRIEF仅仅是特征描述子,所以事先要得到特征点的位置,可以利用FAST特征点检测算法或Harris…
介绍 在机器学习算法的世界里,特征工程是非常重要的.实际上,作为一名数据科学家,这是我最喜欢的方面之一!从现有特征中设计新特征并改进模型的性能,这就是我们进行最多实验的地方. 世界上一些顶级数据科学家依靠特征工程来提高他们在竞赛排行榜得分.我相信你甚至会在结构化数据上使用各种特征工程技术. 我们可以将此技术扩展到非结构化数据(例如图像)吗?对于计算机视觉爱好者来说,这是一个有趣的问题,我们将在本文中解决这个问题.准备好对图像数据进行特征提取形式的特征工程吧! 在本文中,我将向你介绍一种流行的图像…
SURF算子,参考这篇文章的解释http://www.ipol.im/pub/art/2015/69/ SURF 是   Speeded Up Robust Features 加速鲁棒特征的含义. The source code and the online demo are accessible at the IPOL web page of this article1. Theproposed implementation of the SURF algorithm is written i…
ORBSLAM2中ORB特征提取的特点 ORBSLAM2中通过对OpenCV中的ORB特征点提取类进行修改,对图像进行分块提取,而后划分节点,使得每个节点中保存的特征点性能是该节点所有特征点中最好的. 可能按照上面说的方式,大家不太能理解. 这么说吧.将铺满苹果的桌子进行画格子,然后每个格子中就会有不同数量的苹果,在每个格子中选出最好吃的苹果,格子中其他的苹果全部扔掉.(虽然有点可惜,但是大局为重嘛),那么原先摆满苹果的桌子(如图1所示),现在就剩下每个格子一个苹果的桌子,尽管苹果少了很多,但是…
Opencv视频处理中的目标跟踪经常用到要在视频上画一个矩形框ROI,标注出要跟踪的物体,这里介绍两种在视频中绘制矩形框的方法,一种是"静态的",一种是"动态的". 静态的是指在绘制过程中,视频暂停播放,画面定格在鼠标左键单击上去时候播放的画面,这时候按着鼠标左键并拖动出一个感兴趣的区域,鼠标左键抬起完成矩形框的绘制.在整个绘制过程中,矩形是连续显示出来的,跟随鼠标位置变化而变化. 过程和实现都很简单,以下是具体代码实现,主要用到了鼠标响应事件: #include…
http://www.cnblogs.com/tiandsp/archive/2013/04/20/3031862.html [学习opencv]高斯.中值.均值.双边滤波 四种经典滤波算法,在opencv文档中都能找到的,熟悉一下调用规范. #include "cv.h" #include "highgui.h" #include <iostream> using namespace std; using namespace cv; int main(…
以上两篇文章中检测在DOG空间中稳定的特征点,lowe已经提到这些特征点是比Harris角点等特征还要稳定的特征.下一步骤我们要考虑的就是如何去很好地描述这些DOG特征点. 下面好好说说如何来描述这些特征点.许多资料中都提到SIFT是一种局部特征,这是因为在SIFT描述子生成过程中,考虑的是该特征点邻域特征点的分布情况(而没有利用全局信息).本步骤中主要计算过程包括:确定特征点的方向和生成特征描述符. 确定特征点方向 在特征点的确定过程中,特征点的坐标以及尺度被确定下来(坐标很重要,尺度更重要,…
1.直方图 用于计算图片特征,表达, 使得数据具有总结性, 颜色直方图对数据空间进行量化,好比10个bin 2. 聚类 类内对象的相关性高 类间对象的相关性差 常用算法:kmeans, EM算法, meanshift, 谱聚类(密度聚类), 层次聚类 kmeans聚类 选取k个类中心,随机选取 计算每个点跟k个类中心的位置 把数据点分配给距离最近的一个类中心 计算新的类中心-对该类中的所有点取均值 类中心数K的选取 K类平均质心的距离加权平均值, 当k=5时的斜率发生变化,我们可以选取5作为分类…
BRIEF特征全称:Binary Robust Independent Elementary Features.是一种能够快速计算图像特征描述符的方法,同样能够降低特征匹配的时间. 算法计算步骤如下: 1.首先对一张图像计算其特征点,这里就用matlab自带的harris角点检测了,harris代码细节可以参考这一篇博客. 2.对图像进行高斯滤波,这里选用9*9矩阵,主要是为了去除随机噪点. 3.以特征点为中心,取SxS的邻域窗口.在窗口内随机选取一对(两个)点,比较二者像素的大小,进行如下二进…
Opencv拉普拉斯算子——图像增强 #include <iostream> #include <opencv2/opencv.hpp> using namespace std; using namespace cv; //拉普拉斯处理 cv::Mat laplaceMat(cv::Mat imgParam); int main(int argc, char *argv[]) { Mat image = imread(); if (image.empty()) { std::cou…
QT中使用pri子工程 使用子工程的作用是使得工程结构更加清晰,举个例子: 我制作了一个自定义控件,具备通用性,我打算把它用在日后的工程中.制作的这个控件需要用到头文件h.源文件c,资源文件qrc.图片文件png.以及这些文件的工程引用描述文件pro/pri,如果我想在以后的工程中使用这个控件,那么我必须把这一堆文件放到新工程对应的各个对应目录下,那么这个控件的资源文件和新工程的资源文件可能就要混到一块,耦合度太大.使用pri子工程的话,就可以把这个控件相关的所有文件都集成到一个单独的文件夹下,…
在操作系统中,全局描述符是什么?GDT又是什么?在进入保护模式之前,准备好GDT和GDT中的描述符是必须的吗?用汇编代码怎么创建描述符?本文解答上面几个问题. 在实模式下,CPU是16位的,意思是,寄存器是16位的,数组总线(data bus)是16位的,但地址总线是20位的.物理内存地址的计算公式是: $$ 物理地址 = 段地址 * 16 + 偏移量 $$ 段地址和偏移量都是16位的,能寻址的最大内存地址是1M. 1M是怎么计算出来的?2的20次方就是1M,能表示的内存地址是 0~(2的20次…
前言 本文主要介绍如何使用OpenCV剪切图形中的人物头像. 准备工作 首先创建一个Wpf项目--OpenCV_Face_Wpf,这里版本使用Framework4.7.2. 然后使用Nuget搜索[Emgu.CV],如下图. 这里的Emgu.CV选择4.3.0.3890版本,然后安装Emgu.CV和Emgu.CV.runtime.windows. 然后下载所需文件haarcascade_frontalface_default.xml. 可以去OpenCV的开源代码中下载,下载地址:https:/…
#include<iostream> #include <opencv2/opencv.hpp> #include <math.h> using namespace cv; using namespace std; ////该代码实现白平衡算法中的灰度世界法,能有效改善图像发红发蓝发绿的现象: #include <opencv2/opencv.hpp> using namespace cv; int main() { Mat g_srcImage,dstIm…
Consider the string s to be the infinite wraparound string of "abcdefghijklmnopqrstuvwxyz", so s will look like this: "...zabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcd....". Now we have another string p. Your job is to find…
作者提出一种新的基于局部描述子的行为识别算法.…