[BZOJ 1912] patrol 巡逻】的更多相关文章

Link:https://www.lydsy.com/JudgeOnline/problem.php?id=1912 Algorithm: K=0:res=(n-1)*2   每条边恰好走2遍 K=1:res=res-树上最长链+1 由于每形成环,环上的边对答案的贡献都会-1,因此只要将树上最长链连成环即可 K=2:res=res-树上当前最长链+1 将原树上直径的边的边权赋为-1,表示如果原直径边同时出现在第2个环时对答案贡献增加1(变为2) 证明:第二次求最长链相当于对第一次的“反悔”操作,…
树形DP 说是树形DP,其实就是求树的最长链嘛…… K=1的时候明显是将树的最长链的两端连起来最优. 但是K=2的时候怎么搞? 考虑第一次找完树的最长链以后的影响:第一次找过的边如果第二次再走,对答案的贡献会变成-1,因为两次都选这一段的话,反而会使得这一段不得不走两次(如果只被选一次的话就可以只走一次),所以就将第一次找出的树的最长链上的边权值都改为-1.这个操作可以用链表实现(类比一下最小费用最大流的spfa实现!) 题解:http://blog.csdn.net/qpswwww/artic…
1912: [Apio2010]patrol 巡逻 Input 第一行包含两个整数 n, K(1 ≤ K ≤ 2).接下来 n – 1行,每行两个整数 a, b, 表示村庄a与b之间有一条道路(1 ≤ a, b ≤ n). Output 输出一个整数,表示新建了K 条道路后能达到的最小巡逻距离. Sample Input 8 1 1 2 3 1 3 4 5 3 7 5 8 5 5 6 Sample Output 11 HINT 10%的数据中,n ≤ 1000, K = 1: 30%的数据中,K…
1912: [Apio2010]patrol 巡逻 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 1034  Solved: 562[Submit][Status][Discuss] Description Input 第一行包含两个整数 n, K(1 ≤ K ≤ 2).接下来 n – 1行,每行两个整数 a, b, 表示村庄a与b之间有一条道路(1 ≤ a, b ≤ n). Output 输出一个整数,表示新建了K 条道路后能达到的最小巡逻距离.…
1912: [Apio2010]patrol 巡逻 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 2541  Solved: 1288[Submit][Status][Discuss] Description Input 第一行包含两个整数 n, K(1 ≤ K ≤ 2).接下来 n – 1行,每行两个整数 a, b, 表示村庄a与b之间有一条道路(1 ≤ a, b ≤ n). Output 输出一个整数,表示新建了K 条道路后能达到的最小巡逻距离.…
[BZOJ1912][Apio2010]patrol 巡逻 Description Input 第一行包含两个整数 n, K(1 ≤ K ≤ 2).接下来 n – 1行,每行两个整数 a, b, 表示村庄a与b之间有一条道路(1 ≤ a, b ≤ n). Output 输出一个整数,表示新建了K 条道路后能达到的最小巡逻距离. Sample Input 8 1 1 2 3 1 3 4 5 3 7 5 8 5 5 6 Sample Output 11 HINT 10%的数据中,n ≤ 1000,…
题目: https://www.lydsy.com/JudgeOnline/problem.php?id=1912 题解: 首先,显然当不加边的时候,遍历一棵树每条边都要经过两次.那么现在考虑k==1的情况,考虑加入的这一条边有什么作用. 显然,如图4边的作用就是使得原来的1-2-3-3-2-1路线变为了4-3-2-1或1-2-3-4,那么作用就是以多走一步的代价使得这条新边两端的两个结点的遍历路径长度减半. 因此,想要使路径最短,就要使这条新边两端的两个结点之间的距离更长,显然,当两端的结点在…
题目链接 如果k==1, 显然就是直径. k==2的时候, 把直径的边权变为-1, 然后在求一次直径. 变为-1是因为如果在走一次这条边, 答案会增加1. 学到了新的求直径的方法... #include <bits/stdc++.h> using namespace std; #define pb(x) push_back(x) #define ll long long #define mk(x, y) make_pair(x, y) #define lson l, m, rt<<…
题目 传送门:QWQ 分析 $ k=1 $ 时显然就是树的直径 $ k=2 $ 时怎么做呢? 做法是把一开始树的直径上的边的边权改成$ -1 $,那么当我们第二次用这些边做环时就抵消了一开始的贡献. 所以答案就是边的数量*2 - 一开始树的直径 - 后来树的直径 P.S. 第二次求树的直径时只能dp 代码 #include <bits/stdc++.h> using namespace std; ; int n,dis[maxn], inq[maxn] ; struct Edge{ int u…
我是智障系列.用了及其麻烦的方法= =其实树形sp就能解决 设直径长度+1为len(环长) 首先k=1,直接连直径两端就好,答案是2*n-len 然后对于k=2,正常人的做法是树形dp:先求直径,然后把树的直径上的所有边权标为-1,再求一次直径设新直径+1为len2,答案是2*(n−1)−len−len2. 然后zz的做法是分两种情况: len=n,直接输出n+1(因为要加个自环) 否则,答案可能从两种情况产生: 新选出的链两端在都原直径环某一个节点下面,这样的情况可以直接求这个节点子树的直径+…