Spark Shuffle大揭秘】的更多相关文章

什么是Shuffle: Shuffle中文翻译为“洗牌”,需要Shuffle的关键原因是某种具有共同特征的数据需要最终汇聚到一个计算节点上进行计算. Shuffle面临的问题: 1. 数据量非常大: 2 数据如何分类,及如何Partition,Hash.Sort.钨丝计划 3. 负载均衡(数据倾斜) 4. 网络传输效率,需要在压缩和解压缩做出权衡,序列化和反序列化也是需要考虑的问题. Hash Shuffle: 1. Key不能是Array 2. Hash Shuffle不需要排序,从理论上就节…
shuffle是非常重要!一定要深入理解和多实践. 缓存,分组,排序,转发,这些都是mr的shuffle. Soga 我想得到按流量来排序,而且还是倒序,怎么达到实现呢?这就牵扯到排序的的问题 默认是根据key来排, 我想根据value里的某个排, 解决思路:将value里的某个,放到key里去,然后来排 下面,开始weekend110的hadoop的自定义排序实现 也要修改FlowBean代码…
Spark Streaming揭秘 Day3 运行基石(JobScheduler)大揭秘 引子 作为一个非常强大框架,Spark Streaming兼具了流处理和批处理的特点.还记得第一天的谜团么,众多的Job形成了其血肉,而其背后都是有JobScheduler来支撑,这也是Spark Streaming运行的基石.这块代码非常的简明,让我们学习一下. 1.从启动代码开始 从ssc的启动代码中,一眼就能发现,最重要的部分就是JobScheduler的启动 再次深入,我们发现实际上是启动了两个组件…
摘要: 1 shuffle原理 1.1 mapreduce的shuffle原理 1.1.1 map task端操作 1.1.2 reduce task端操作 1.2 spark现在的SortShuffleManager 2 Shuffle操作问题解决 2.1 数据倾斜原理 2.2 数据倾斜问题发现与解决 2.3 数据倾斜解决方案 3 spark RDD中的shuffle算子 3.1 去重 3.2 聚合 3.3 排序 3.4 重分区 3.5 集合操作和表操作 4 spark shuffle参数调优…
shuffle...相当重要,为什么咩,因为shuffle的性能优劣直接决定了整个计算引擎的性能和吞吐量.相比于Hadoop的MapReduce,可以看到Spark提供多种计算结果处理方式,对shuffle过程进行了优化. 那么我们从RDD的iterator方法开始: 我们可以看到,它调用了cacheManager的getOrCompute方法,如果分区任务第一次执行还没有缓存,那么会调用computeOrReadCheckpoint.如果某个partition任务执行失败,可以利用DAG重新调…
有许多场景下,我们需要进行跨服务器的数据整合,比如两个表之间,通过Id进行join操作,你必须确保所有具有相同id的数据整合到相同的块文件中.那么我们先说一下mapreduce的shuffle过程. Mapreduce的shuffle的计算过程是在executor中划分mapper与reducer.Spark的Shuffling中有两个重要的压缩参数.spark.shuffle.compress true---是否将会将shuffle中outputs的过程进行压缩.将spark.io.compr…
MapReduce的Shuffle过程介绍 Shuffle的本义是洗牌.混洗,把一组有一定规则的数据尽量转换成一组无规则的数据,越随机越好.MapReduce中的Shuffle更像是洗牌的逆过程,把一组无规则的数据尽量转换成一组具有一定规则的数据. 为什么MapReduce计算模型需要Shuffle过程?我们都知道MapReduce计算模型一般包括两个重要的阶段:Map是映射,负责数据的过滤分发:Reduce是规约,负责数据的计算归并.Reduce的数据来源于Map,Map的输出即是Reduce…
Apache Spark探秘:Spark Shuffle实现 http://dongxicheng.org/framework-on-yarn/apache-spark-shuffle-details/ 对于大数据计算框架而言,Shuffle阶段的设计优劣是决定性能好坏的关键因素之一.本文将介绍目前Spark的shuffle实现,并将之与MapReduce进行简单对比.本文的介绍顺序是:shuffle基本概念,MapReduce Shuffle发展史以及Spark Shuffle发展史. (1)…
随着互联网.移动互联网和物联网的发展,我们已经切实地迎来了一个大数据 的时代.大数据是指无法在一定时间内用常规软件工具对其内容进行抓取.管理和处理的数据集合,对大数据的分析已经成为一个非常重要且紧迫的需求.目前对大数据的分析工具,首选的是Hadoop/Yarn平台,但目前对大数据的实时分析工具,业界公认最佳为Spark.Spark是基于内存计算的大数据并行计算框架,Spark目前是Apache软件基金会旗下,顶级的开源项目,Spark提出的DAG作为MapReduce的替代方案,兼容HDFS.H…
本课主题 JVM 內存使用架构剖析 Spark 1.6.x 和 Spark 2.x 的 JVM 剖析 Spark 1.6.x 以前 on Yarn 计算内存使用案例 Spark Unified Memory 的运行原理和机制 引言 Spark 从1.6.x 开始对 JVM 的内存使用作出了一种全新的改变,Spark 1.6.x 以前是基于静态固定的JVM内存使用架构和运行机制,如果你不知道 Spark 到底对 JVM 是怎么使用,你怎么可以很有信心地或者是完全确定地掌握和控制数据的缓存空间呢,所…