A*B problem(FFT)】的更多相关文章

[CF954I]Yet Another String Matching Problem(FFT) 题面 给定两个字符串\(S,T\) 求\(S\)所有长度为\(|T|\)的子串与\(T\)的距离 两个等长的串的距离定义为最少的,将某一个字符全部视作另外一个字符的次数. \(|T|<=|S|<=10^6\),字符集大小为\(6\) 题解 考虑如何快速计算两个串的答案,从左向右扫一遍,如果对应位置上有两个字符不同,检查在并查集中是否属于同一个集合,如果不属于则答案加一,同时合并两个集合.(这个就是…
#include<iostream> #include<cstdio> #include<cstring> #include<cmath> #include<cstdlib> #define pi acos(-1) #define rep(i,x,y) for(register int i = x; i <= y;++i) using namespace std; const int N = 3e5; struct cpx { double…
A * B Problem Plus HDU - 1402 (FFT) Calculate A * B.  InputEach line will contain two integers A and B. Process to end of file. Note: the length of each integer will not exceed 50000. OutputFor each case, output A * B in one line. Sample Input 1 2 10…
快速傅里叶变换(FFT) FFT 是之前学的,现在过了比较久的时间,终于打算在回顾的时候系统地整理一篇笔记,有写错的部分请指出来啊 qwq. 卷积 卷积.旋积或褶积(英语:Convolution)是通过两个函数 \(f\) 和 \(g\)​​ 生成第三个函数的一种数学算子. 定义 设 \(f,g\)​ 在 \(R1\)​ 上可积,那么 \(h(x) = \int_{-∞}^∞f(\tau)g(x-\tau)d\tau\) 称为 \(f\) 与 \(g\)​ 的卷积. 对于整系数多项式域,\(n-…
关于按时间抽取快速傅里叶(FFT)的快速理论深度思考 对于FFT基本理论参考维基百科或百度百科. 首先谈谈FFT的快速何来?大家都知道FFT是对DFT的改进变换而来,那么它究竟怎样改进,它改进的思想在何处呢?明白后,深感奇妙,感悟学习,感悟生活,写下此文,供大家分享之.(文中FFT均讨论按时间抽取快速傅里叶(FFT)) 首先我们来一起看看变换公式,DFT ->FFT(整数 ->奇数 + 偶数) 我自己到这结束也没了解它是怎么把时间变少的,从O(N2)(DFT时间深度)到O(N log2 N)(…
[BZOJ3527]力(FFT) 题面 Description 给出n个数qi,给出Fj的定义如下: \[Fj=\sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_{i>j}\frac{q_i q_j}{(i-j)^2 }\] 令\(Ei=Fi/qi\),求\(Ei\). Input 第一行一个整数n. 接下来n行每行输入一个数,第i行表示qi. n≤100000,0<qi<1000000000 Output n行,第i行输出Ei.与标准答案误差不超过1…
[BZOJ4827][HNOI2017]礼物(FFT) 题面 Description 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一 个送给她.每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度.但是在她生日的前一天,我的室友突 然发现他好像拿错了一个手环,而且已经没时间去更换它了!他只能使用一种特殊的方法,将其中一个手环中所有 装饰物的亮度增加一个相同的自然数 c(即非负整数).并且由于这个手环是一个圆,可以以任意的角度旋转它, 但…
前言 众所周知,这两个东西都是用来算多项式乘法的. 对于这种常人思维难以理解的东西,就少些理解,多背板子吧! 因此只总结一下思路和代码,什么概念和推式子就靠巨佬们吧 推荐自为风月马前卒巨佬的概念和定理都非常到位的总结 推荐ppl巨佬的简明易懂的总结 FFT 多项式乘法的蹊径--点值表示法 一般我们把两个长度为\(n\)的多项式乘起来,就类似于做竖式乘法,一位一位地乘再加到对应位上,是\(O(n^2)\)的 如何优化?直接看是没有思路的,只好另辟蹊径了. 多项式除了我们常用的系数表示法\(y=a_…
[BZOJ4503]两个串(FFT) 题面 给定串\(S\),以及带通配符的串\(T\),询问\(T\)在\(S\)中出现了几次.并且输出对应的位置. \(|S|,|T|<=10^5\),字符集大小为\(26\) 题解 先来考虑没有通配符怎么匹配.别跟我说KMP!! 根据前面几个题目的套路,我们可以把每个字符分开来考虑,然后将\(T\)串反转,将有这个字符的位置变成\(1\),然后\(FFT\),就可以知道在这一段里面这个字符匹配上了多少个,然后把每个字符求个和,检查是否恰好匹配了\(|T|\)…
[BZOJ4259]残缺的字符串(FFT) 题面 给定两个字符串\(|S|,|T|\),两个字符串中都带有通配符. 回答\(T\)在\(S\)中出现的次数. \(|T|,|S|<=300000\) 题解 和两个串基本一样.. 现在\(S\)串中也存在通配符,所以在函数后面再额外乘上一个\(S[i]\)就行了. 拆开式子后是三个卷积的形式. 时间复杂度\(O(nlogn)\) #include<iostream> #include<cstdio> #include<cst…
[BZOJ3489]A simple rmq problem(KD-Tree) 题面 BZOJ 题解 直接做肯定不好做,首先我们知道我们是一个二维平面数点,但是限制区间只能出现一次很不好办,那么我们给每个数记录一下和它相等的上一个位置和下一个位置,那么这两个位置的限定范围就在区间以外,于是变成了一个\(4\)维数点问题,直接\(KD-Tree\)了. #include<iostream> #include<cstdio> #include<algorithm> usin…
[51Nod1258]序列求和V4(FFT) 题面 51Nod 多组数据,求: \[Ans=\sum_{i=1}^ni^k,n\le 10^{18},k\le50000\] 题解 预处理伯努利数,时间复杂度\(O(nlogn)\) 然后利用伯努利数求和即可. \[\sum_{i=1}^n i^k=\frac{1}{k+1}\sum_{i=0}^kB_iC_{k+1}^i(n+1)^{k+1-i}\] 预处理需要多项式求逆,因为模数不太好,所以需要\(MTT\) #include<iostream…
[CF528D]Fuzzy Search(FFT) 题面 给定两个只含有\(A,T,G,C\)的\(DNA\)序列 定义一个字符\(c\)可以被匹配为:它对齐的字符,在距离\(K\)以内,存在一个字符\(c\),问给定串\(T\)在\(S\)中出现了几次. \(|S|,|T|,K<=200000\) 题解 字符集很小,可以分开进行\(FFT\). 现在的匹配的定义为距离当前位置\(K\)以内的所有字符中是否含有这个字符,如果有设置为\(1\),没有就是\(0\),把字符分开做\(FFT\)然后相…
P3803 [模板]多项式乘法(FFT) 题目背景 这是一道FFT模板题 题目描述 给定一个n次多项式F(x),和一个m次多项式G(x). 请求出F(x)和G(x)的卷积. 输入输出格式 输入格式: 第一行2个正整数n,m. 接下来一行n+1个数字,从低到高表示F(x)的系数. 接下来一行m+1个数字,从低到高表示G(x))的系数. 输出格式: 一行n+m+1个数字,从低到高表示F(x)∗G(x)的系数. 输入输出样例 输入样例#1: 复制 1 2 1 2 1 2 1 输出样例#1: 复制 1…
题目: BZOJ3527 分析: FFT应用第一题-- 首先很明显能把\(F_j\)约掉,变成: \[E_j=\sum _{i<j} \frac{q_i}{(i-j)^2}-\sum_{i>j}\frac{q_i}{(i-j)^2}\] 然后去膜拜题解,我们知道两个多项式相乘的方式如下: \[C_j=\sum_{i=0}^j A_iB_{j-i}\] 那么,如果把\(E_j\)的表达式化成上面那个形式,就可以用FFT计算了.(不会FFT?戳我:[知识总结]快速傅里叶变换(FFT)) 先看减号前…
这可能是我第五次学FFT了--菜哭qwq 先给出一些个人认为非常优秀的参考资料: 一小时学会快速傅里叶变换(Fast Fourier Transform) - 知乎 小学生都能看懂的FFT!!! - 胡小兔 - 博客园 快速傅里叶变换(FFT)用于计算两个\(n\)次多项式相乘,能把复杂度从朴素的\(O(n^2)\)优化到\(O(nlog_2n)\).一个常见的应用是计算大整数相乘. 本文中所有多项式默认\(x\)为变量,其他字母均为常数.所有角均为弧度制. 一.多项式的两种表示方法 我们平时常…
P1581 A+B Problem(升级版) 题目背景 小明这在写作业,其中有一道A+B Problem ,他想啊想啊想,就是想不出来,于是就找到了会编程的你...... 题目描述 这里的A+B是很奇特的.它是按质数的顺序来进位的.例如:1,0+2,1=1,0,1(用,来分隔每一位).个位是2进制,十位是3进制,百位是5进制,千位是7进制,万位是11进制……两个加数的最高位是万位(万位可能有两位). 输入输出格式 输入格式: 输入一个形如1,0+2,1字符串s. 输出格式: 输出相加后的结果.…
前言 如果我们能用一种时间上比 \(O(n^2)\) 更优秀的方法来计算大整数(函数)的乘法,那就好了.快速傅里叶变换(FFT) 可以帮我们在 \(O(n\log n)\) 的时间内解决问题. 函数乘积 计算两个大整数之积时,我们发现 \[(2x+3)(4x+5)=8x^2+22x+15\quad...(*)\\ 23\times45=1035\] 而如果我们把 \((*)\) 式右边的每一位的系数看做一个数每位上的数码,正好得到了 \(1035\).事实上,对于所有的多项式乘法,以上规律同样成…
844-A+B Problem(V) 内存限制:64MB 时间限制:1000ms 特判: No 通过数:14 提交数:17 难度:1 题目描述: 做了A+B Problem之后,Yougth感觉太简单了,于是他想让你求出两个数反转后相加的值.帮帮他吧 输入描述: 有多组测试数据.每组包括两个数m和n,数据保证int范围,当m和n同时为0是表示输入结束. 输出描述: 输出反转后相加的结果. 样例输入: 复制 1234 1234 125 117 0 0 样例输出: 8642 1232 python …
快速傅里叶变换(FFT)                                                                               ---- LLppdd 前言 关于这篇文章     非常高兴能有机会来探讨快速傅里叶变换,也就是大家熟知的 \(FFT\) 在 \(OI\) 中的运用.以前了解过一次 \(FFT\) ,现在过了几个月,数学和 \(OI\) 水平都有了一定的进步之后,再回过来重新思考它,应该有了更深的了解,所以准备写一篇较为详细的文章…
题目链接:P3803 [模板]多项式乘法(FFT) 题意 给定一个 \(n\) 次多项式 \(F(x)\) 和一个 \(m\) 次多项式 \(G(x)\),求 \(F(x)\) 和 \(G(x)\) 的卷积. 思路 FFT 又是一道 \(FFT\) 的模板题,不过用递归的 \(FFT\) 会超时. 代码 #include <bits/stdc++.h> using namespace std; const double PI = acos(-1); typedef complex<dou…
[模板]多项式乘法(FFT) 题目链接:luogu P3803 题目大意 给你两个多项式,要你求这两个多项式乘起来得到的多项式.(卷积) 思路 系数表示法 就是我们一般来表示一个多项式的方法: \(A(x)=a_1x^k+a_2x^{k-1}+...+a_k\) 或者可以这样表示: \(A(x)=\sum\limits_{i=1}^{k}a_i\times x_i\) 那你很容易看到,用来做这道题用系数表示法来做是 \(O(n^2)\) 的. 点值表示法 假设我们已经知道了这个多项式,那我们把…
一.引入 首先,定义多项式的形式为 \(f(x)=\sum_{i=0}^n a_ix^i\),其中 \(a_i\) 为系数,\(n\) 为次数,这种表示方法称为"系数表示法",一个多项式是由其系数确定的. 可以证明,\(n+1\) 个点可以唯一确定一个 \(n\) 次多项式.对于 \(f(x)\),代入 \(n+1\) 个不同的 \(x\),得到 \(n+1\) 个不同的 \(y\).一个 \(n\) 次的多项式就可以等价地换成 \(n+1\) 个等式,相当于平面上的 \(n+1\)…
Problem Description Calculate A * B.   Input Each line will contain two integers A and B. Process to end of file. Note: the length of each integer will not exceed 50000.   Output For each case, output A * B in one line.   题目大意:求A * B. 思路:快速傅里叶变换的模板题,…
多项式 系数表示法 设\(f(x)\)为一个\(n-1\)次多项式,则 \(f(x)=\sum\limits_{i=0}^{n-1}a_i*x_i\) 其中\(a_i\)为\(f(x)\)的系数,用这种方法计算两个多项式相乘(逐位相乘)复杂度为\(O(n^2)\) 点值表示法 根据小学知识,一个\(n-1\)次多项式可以唯一地被\(n\)个点确定 即,如果我们知道了对于一个多项式的\(n\)个点\((x_1,y_1),(x_2,y_2)--(x_n,y_n)\) 那么这个多项式唯一满足,对任意\…
Prime Ring Problem Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 18313    Accepted Submission(s): 8197 Problem Description A ring is compose of n circles as shown in diagram. Put natural numbe…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4609 题意:给出n个正整数(数组A).每次随机选出三个数.问这三个数能组成三角形的概率为多大? 思路:求出有多少种选择的方案,除以总选择方案即可.用num[i]表示长度为i的出现几次. 对于样例1 3 3 4,我们得到num={0,1,0,2,1}, 对num求卷积,得到:num={0,0,1,0,4,2,4,4,1}.此时的num[i]表示选择两个数和为i的选择方案的种数. 但是这里有重复的: (…
图:信号在时域上和频域上的直观表示 1. 计算一维离散傅里叶变换(DFT)公式如下: 其中,N表示数据长度.由上式可知,DFT的时间复杂度是O(N*N) 2. 一维FFT的时间复杂度为O(N*logN),其中N表示数据长度 3. 对于一个M*N的二维数据,FFT的时间复杂度为O( M*N*log(M*N) ) 若M=N,则时间复杂度可以简化为O(N^2*logN) 4. 对于M维的数据(每一维长度为A,B,C,...),则FFT的时间复杂度为O( A*B*C*...* log(A*B*C*...…
题目链接 Problem Description Zty很痴迷数学问题..一天,yifenfei出了个数学题想难倒他,让他回答1 / n.但Zty却回答不了^_^. 请大家编程帮助他. Input 第一行整数T,表示测试组数.后面T行,每行一个整数 n (1<=|n|<=10^5). Output 输出1/n. (是循环小数的,只输出第一个循环节). Sample Input 4 2 3 7 168 Sample Output 0.5 0.3 0.142857 0.005952380 分析:…
E. Ladies' Shop time limit per test 8 seconds memory limit per test 256 megabytes input standard input output standard output A ladies' shop has recently opened in the city of Ultima Thule. To get ready for the opening, the shop bought n bags. Each b…