题面 传送门 题解 orz shadowice 正态分布 正态分布是随机变量\(X\)的一种概率分布形式.它用一个期望\(\mu\)和方差\(\sigma^2\)就可以描述,记为\(N(\mu,\sigma^2)\). 若随机变量\(X\)服从一个数学期望为\(\mu\).方差为\(\sigma^2\)的正态分布,记作\(X\)∼\(N(\mu,\sigma^2)\),读作\(X\)服从\(N(\mu,\sigma^2)\). 当\(\mu=0,\sigma=1\)时的正态分布称为标准正态分布.…
前言 众所周知,这两个东西都是用来算多项式乘法的. 对于这种常人思维难以理解的东西,就少些理解,多背板子吧! 因此只总结一下思路和代码,什么概念和推式子就靠巨佬们吧 推荐自为风月马前卒巨佬的概念和定理都非常到位的总结 推荐ppl巨佬的简明易懂的总结 FFT 多项式乘法的蹊径--点值表示法 一般我们把两个长度为\(n\)的多项式乘起来,就类似于做竖式乘法,一位一位地乘再加到对应位上,是\(O(n^2)\)的 如何优化?直接看是没有思路的,只好另辟蹊径了. 多项式除了我们常用的系数表示法\(y=a_…
洛谷题目传送门 闲话 这是所有LCT题目中的一个异类. 之所以认为是LCT题目,是因为本题思路的瓶颈就在于如何去维护同颜色的点的集合. 只不过做着做着,感觉后来的思路(dfn序,线段树,LCA)似乎要喧宾夺主了...(至少在代码上看是如此) 思路分析 一个一个操作来(瞎BB中,这种思路模式并不具有普遍性......) 1操作 还好我没学树剖233333以至于(直接想到)只好用LCT来维护颜色. 题目透露出的神奇的性质--每一种颜色,无论在任何时刻,肯定是一条链,而且点的深度严格递增! 而且还特意…
BZOJ 洛谷 https://www.luogu.org/blog/ShadowassIIXVIIIIV/solution-p3779# 正态分布 正态分布是随机变量\(X\)的一种概率分布形式.它用一个期望\(\mu\)和方差\(\sigma^2\)就可以描述,记为\(N(\mu,\sigma^2)\). 若随机变量\(X\)服从一个数学期望为\(\mu\).方差为\(\sigma^2\)的正态分布,记作\(X\sim N(\mu,\sigma^2)\),读作\(X\)服从\(N(\mu,\…
洛谷很早以前就写过了,今天交到bzoj发现TLE了. 检查了一下发现自己复杂度是错的. 题目传送门:洛谷P3704. 题意简述: 求 \(\prod_{i=1}^{N}\prod_{j=1}^{M}F_{\gcd(i,j)}\bmod mod\) ,其中 \(F_{i}\) 是斐波那契数列的第 \(i\) 项, \(mod=10^9+7\) . \(T\) 组数据. 题解: 喜闻乐见的推式子时间. 不失一般性,假设 \(N\le M\) . \[\begin{aligned}&\prod_{i=…
洛谷题面传送门 SDOI 2017 R2 D1 T3,nb tea %%% 讲个笑话,最近我在学动态 dp,wjz 在学 FWT,而我们刚好在同一天做到了这道题,而这道题刚好又是 FWT+动态 dp 首先考虑怎样暴力计算答案,我们记 \(dp_{u,j}\) 表示以 \(u\) 为根的子树中有多少个连通块包含 \(u\) 且权值的异或和为 \(j\),初始 \(dp_{u,val_u}=1\),每次遍历 \(u\) 的一个子树 \(v\) 就对这个子树就对这两个子树的 \(dp\) 做一个合并,…
题目链接 [BZOJ] [洛谷] 题解 首先我们需要对这个式子进行化简,否则对着这么大一坨东西只能暴力... \[F_i=\sum_{j<i} \frac{q_iq_j}{(i-j)^2}-\sum_{j>i} \frac{q_iq_j}{(i-j)^2}\] 根据题目给出的定义,带入\(E\)中 \[E_i=\sum_{j=1}^{i-1}\frac{q_j}{(i-j)^2}-\sum_{j=i+1}^{n}\frac{q_j}{(j-i)^2}\] 形式稍微改变了一下,本质一样 需要处理…
题目传送门 A*B problem 题目描述 给出两个n位10进制整数x和y,你需要计算x*y. 输入输出格式 输入格式: 第一行一个正整数n. 第二行描述一个位数为n的正整数x. 第三行描述一个位数为n的正整数y. 输出格式: 输出一行,即x*y的结果.(注意判断前导0) 输入输出样例 输入样例#1: 1 3 4 输出样例#1: 12 说明 数据范围: n<=60000 来源:bzoj2179 本题数据为洛谷自造数据,使用CYaRon耗时5分钟完成数据制作. 分析: 之前都是拿python水过…
P3705 [SDOI2017]新生舞会 题目描述 学校组织了一次新生舞会,\(Cathy\)作为经验丰富的老学姐,负责为同学们安排舞伴. 有\(n\)个男生和\(n\)个女生参加舞会买一个男生和一个女生一起跳舞,互为舞伴. \(Cathy\)收集了这些同学之间的关系,比如两个人之前认识没计算得出\(a_{i,j}\) \(Cathy\)还需要考虑两个人一起跳舞是否方便,比如身高体重差别会不会太大,计算得出\(b_{i,j}\) ,表示第\(i\)个男生和第\(j\)个女生一起跳舞时的不协调程度…
题目描述 Doris刚刚学习了fibonacci数列.用f[i]f[i] 表示数列的第ii 项,那么 f[0]=0f[0]=0 ,f[1]=1f[1]=1 , f[n]=f[n-1]+f[n-2],n\geq 2f[n]=f[n−1]+f[n−2],n≥2 Doris用老师的超级计算机生成了一个n×mn×m 的表格, 第ii 行第jj 列的格子中的数是f[\gcd(i,j)]f[gcd(i,j)] ,其中\gcd(i,j)gcd(i,j) 表示i,ji,j 的最大公约数. Doris的表格中共有…
传送门 概率论神仙题-- 首先一个暴力做法是设\(f_{i,j}\)表示前\(i\)个骰子摇出点数和为\(j\)的概率,不难发现DP的过程是一个多项式快速幂,FFT优化可以做到\(O(XYlog(XY))\) 但是能够跑过\(4 \times 10^6\)的FFT应该很少见,所以我们对于\(Y\)比较大的部分需要另外考虑做法. 首先一个前置是概率密度函数:对于一个连续型随机变量\(p\),\(f(x)\)是\(p\)的概率密度函数当且仅当对于\(\forall l<r\),\(\int_l^r…
分析: 化简一下就行了,注意一下平方和公式的运用以及精度的误差. 代码: #include<bits/stdc++.h> using namespace std; ; int n,m; int x[maxn],y[maxn]; struct node{ int lazx1,lazx2,lazy1,lazy2; double multi,sumx,sumy,sqr; }T[maxn<<]; long long ump(int l,int r){ )*(*r+)-1ll*(l-)*l*…
题目分析: 裸题.怀疑$ O(n^4log{n}) $跑不过,考虑Edmonds-Karp优化. 代码: #include<bits/stdc++.h> using namespace std; ; ; int n; int a[maxn][maxn],b[maxn][maxn]; double lx[maxn],ly[maxn],c[maxn][maxn]; int inS[maxn],inT[maxn],Left[maxn]; double slack[maxn]; void read()…
题目分析: 比较有意思,但是套路的数学题. 题目要求$ \prod_{i=1}^{n} \prod_{j=1}^{m}Fib(gcd(i,j)) $. 注意到$ gcd(i,j) $有大量重复,采用莫比乌斯反演.可以写成: $ \prod_{i=1}^{min(n,m)}Fib(i)^{\sum_{i|d}\mu(\frac{d}{i})\lfloor \frac{n}{d}\rfloor\lfloor \frac{m}{d}\rfloor} $. 更进一步的,我们可以发现幂是一个求和,那么把求…
题目分析: 操作一很明显等价于LCT上的access操作,操作二是常识,操作三转化到dfs序上求最大值也是常识.access的时候顺便在线段树中把对应部分-1,把右子树的子树+1即可. 代码: #include<bits/stdc++.h> using namespace std; ; int num,n,m; vector <int> g[maxn]; int f[maxn],dep[maxn],dfsin[maxn],dfsout[maxn]; class SegmentTre…
题目:https://www.luogu.org/problemnew/show/P3706 题解:https://blog.csdn.net/gjghfd/article/details/80355976 令 \( p_x \) 表示哪个串都没在结尾匹配上的概率,那么在 \( p_x \) 的基础上再出现 m 个特定的字符就能拼出任意一个串了. 但是在再出现 m 个字符的过程中可能已经匹配上了某个串,比如 HTT 和 THT ,想在 \( p_x \) 的基础上出现 THT 拼出第二个串,但如…
题面 传送门 题解 不知道概率生成函数是什么的可以看看这篇文章,题解也在里面了 //minamoto #include<bits/stdc++.h> #define R register #define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i) #define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i) #define go(u) for(int i=head[u],v=e[i].v;i;i=e[…
题面 传送门 题解 去看\(shadowice\)巨巨写得前后缀优化建图吧 话说我似乎连线段树优化建图的做法都不会 //minamoto #include<bits/stdc++.h> #define R register #define ll long long #define pb push_back #define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i) #define fd(i,a,b) for(R int i=(a),I=(b)-1…
题面 传送门 题解 生成函数这厮到底还有什么是办不到的-- 首先对于一个数\(i\),如果存在的话可以取无限多次,那么它的生成函数为\[\sum_{j=0}^{\infty}x^{ij}={1\over 1-x^i}\] 然后我们设\(a_i\in [0,1]\)表示这个数是否存在这个集合里,那么给出了\(F\),满足 \[F(x)=\prod_{i=1}^n\left({1\over 1-x^i}\right)^{a_i}\] 然后我们现在就是要求出\(a_i\) 首先我们要知道一个东西\[\…
传送门 yyb大佬太强啦…… 感觉还是有一点地方没有搞懂orz //minamoto #include<cstdio> #include<iostream> #include<cstring> using namespace std; #define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++) <<],*p1=buf,*p2=bu…
题面 https://www.lydsy.com/JudgeOnline/problem.php?id=4909 题解 目前为止仅仅在LOJ上A掉这道题(Loj真快!) 当然不是标准做法 显然我们只要求一个 然后$a^n$的系数就表示选n个的方案数 那么我们找到 然后$a^n$的系数就表示选n个的概率 FFT即可 按理说这东西只能过60分但是LOJ的评测机成功过掉...而且时限4秒最慢一个点只用3秒!!! Code #include<bits/stdc++.h> using namespace…
题目描述 Frank对天文学非常感兴趣,他经常用望远镜看星星,同时记录下它们的信息,比如亮度.颜色等等,进而估算出星星的距离,半径等等. Frank不仅喜欢观测,还喜欢分析观测到的数据.他经常分析两个参数之间(比如亮度和半径)是否存在某种关系. 现在Frank要分析参数XX 与YY 之间的关系.他有nn 组观测数据,第ii 组观测数据记录了x_ixi​ 和y_iyi​ .他需要一下几种操作 1 L,RL,R : 用直线拟合第LL 组到底RR 组观测数据.用\overline{x}x 表示这些观测…
题目大意: Alice想要得到一个长度为\(n\)的序列,序列中的数都是不超过\(m\)的正整数,而且这\(n\)个数的和是\(p\)的倍数. Alice还希望,这\(n\)个数中,至少有一个数是质数. Alice想知道,有多少个序列满足她的要求. 对\(100\%\)的数据,\(1\leq n \leq 10^9,1\leq m \leq 2\times 10^7,1\leq p\leq 100\) 直接求不太好求,容斥一下,先求出全部的方案,再除掉没有质数的 全部的方案怎么求? 考虑\(dp…
题意: 给定两个整数 \(n, m\),求: \[\prod_{i = 1} ^ n \prod_{j = 1} ^ m \operatorname{Fib}_{\gcd\left(n, m\right)} \] 其中 \(\operatorname{Fib}_n\) 表示斐波那契数列的第 \(n\) 项,斐波那契数列按照如下方式递归定义: \[\begin{equation} \operatorname{Fib}_n = \begin{cases} 1 & n = 1\ \text{or}\…
又一道好题啊qwqqqq 一开始看这个题,还以为是一个树剖的什么毒瘤题目 (不过的确貌似可以用树剖啊) qwq这真是一道\(LCT\)维护颜色的好题 首先,我们来一个一个操作的考虑. 对于操作\(1\)来说,我们是不是就相当于把\(1~x\)的路径,弄成一个独立的联通块? 哎,这个貌似是\(access(x)\)的操作理念啊QWQ 假设我们用\(LCT\)维护这棵树,一开始就全是虚边,然后对于一次1操作,那么就相当于一次\(access\),那么权值的定义,也就相当于到1的路径上要经过多少个不同…
成功又一次自闭了 怕不是猪国杀之后最自闭的一次 一看到最短路径. 我们就能推测这应该是个最短路题 现在考虑怎么建图 根据题目的意思,我们可以发现,在本题中,边与边之间存在一些转换关系,但是点与点之间并不存在. 那么我们考虑 边转点,点转边. 每一条边拆成两个点,之间连边权的边 新建一个起点\(S\),与\(1\)号点的出边所对应的入点连边 然后根据原图中一个点的入度和出度之间的关系建图.(我们可以将\(LCP\)视为\(trie\)树上的\(LCA\)) 最后跑一遍\(dijkstra\),那么…
题面传送门 题意: 求 \[\prod\limits_{i=1}^n\prod\limits_{j=1}^mfib_{\gcd(i,j)} \] \(T\) 组测试数据,\(1 \leq T \leq 10^3\),\(1 \leq n,m \leq 10^6\) 没啥好说的,直接推式子. \[\begin{aligned}ans&=\prod\limits_{i=1}^n\prod\limits_{j=1}^mfib_{\gcd(i,j)}\\&=\prod\limits_{d=1}^{…
题面传送门 神仙题一道. 首先注意到这里的贡献涉及到边的顺序,并且只与相邻的边是什么有关,因此不难想到一个做法--边转点,点转边,具体来说对于每条边 \(e\),我们将其拆成两个点 \(in_e,out_e\),并连边 \(in_e\to out_e\),权值为 \(c_e\),同时对于所有 \(b_i=a_j\) 的边 \(i,j\),连边 \(out_i\to in_j\),权值为 \(dep[\text{LCA}(d_i,d_j)]\),以及对于所有 \(a_i=1\) 的边连 \(S\t…
传送门 fft模板题. 终于学会fft了. 这个方法真是神奇! 经过试验发现手写的complex快得多啊! 代码: #include<iostream> #include<cstdio> #include<cmath> #define N 10000005 using namespace std; inline int read(){ int ans=0,w=1; char ch=getchar(); while(!isdigit(ch)){if(ch=='-')w=-…
题目链接 Simpson积分公式:\[\int_a^bf(x)dx\approx\frac{b-a}{6}\left[f(a)+f(b)+4f(\frac{a+b}{2})\right]\] 推导过程大概就是,令\(f(x)=Ax^2+Bx+C\),代进去求一下积分就好了? 自适应是指根据区间大小控制精度.满足精度要求时直接返回. 那个,有人知道asr是指什么吗..(什么的缩写?) //0ms 1.7MB #include <cmath> #include <cstdio> #in…