Time Limit: 6 Sec  Memory Limit: 128 MBSubmit: 2054  Solved: 850[Submit][Status][Discuss] Description 已知一个长度为n的正整数序列A(下标从1开始), 令 S = { x | 1 <= x <= n }, S 的幂集2^S定义为S 所有子 集构成的集合.定义映射 f : 2^S -> Zf(空集) = 0f(T) = XOR A[t] , 对于一切t属于T现在albus把2^S中每个集…
题目传送门 这是个通往vjudge的虫洞 这是个通往bzoj的虫洞 题目大意 给定集合$S$,现在将任意$A\subseteq S$中的元素求异或和,然后存入一个数组中(下标从1开始),然后从小到大排一个序.问$q$第一次出现在$A$中的下标. 我们可以通过线性基得到值域上有多少个异或和比$q$小,现在问题来了,怎么求$q$的下标. 通过打表找规律,以及手动枚举可以发现一个结论. 定理1 设线性基为$B$,那么在$S$的子集的异或和中,出现的异或和的出现的次数是$2^{\left | S \ri…
传送门 这个题题目描述真怪异--就不能说人话吗-- 人话:给定长为n的序列A,定义f(s)为集合s内所有元素异或值,求A的所有子集的f值从小到大排列后,q在其中第一次出现的下标对10086取模的值. 首先不难想到构建线性基.线性基有一个良好的性质!假设这n个数的线性基中有k的数,那么显然有\(2^k\)种异或值.之后,因为线性基是可以看作线性基中本来有的数再加上一堆0,所以每一种异或值应该出现过\(2^{n-k}\)次. 那么我们只需要求出来q在这一堆异或值中的排名.这个我们可以仿照求第k大的操…
引用题解:http://blog.csdn.net/PoPoQQQ/article/details/39829237 注意评论区. #include<cstdio> using namespace std; #define MOD 10086 #define N 100001 int n,a[N],m,base[32],k,real[32],ans,now; int main() { scanf("%d",&n); for(int i=1;i<=n;++i)…
线性基求可重rank 题目描述 给定 n 个数 $\{ a_i \}$ ,以及数 $x$. 将 $\{ a_i \}$​ 的所有子集(包括空集)的异或值从小到大排序,得到 $\{ b_i \} $. 求 $x$ 在 $\{ b_i \}$ 中第一次出现的下标.保证 $x$ 在 $\{ b_i \}$ 中出现. HINT 数据范围: 1 <= N <= 10,0000 其他所有输入均不超过10^9 题目分析 考虑线性基求rank的过程,是一个求第k大的逆过程.也就是首先对线性基消元,再把线性基的…
Description 已知一个长度为n的正整数序列A(下标从1开始), 令 S = { x | 1 <= x <= n }, S 的幂集2^S定义为S 所有子集构成的集合. 定义映射 f : 2^S -> Z f(空集) = 0f(T) = XOR A[t] , 对于一切t属于T 现在albus把2^S中每个集合的f值计算出来, 从小到大排成一行, 记为序列B(下标从1开始). 给定一个数, 那么这个数在序列B中第1次出现时的下标是多少呢? Input 第一行一个数n, 为序列A的长度…
http://www.lydsy.com/JudgeOnline/problem.php?id=2844 题意:给定 n个数,把它的所有子集(可以为空)的异或值从小到大排序得到序列 B,请问 Q 在 B 中第一次出现的下标是多少?保证 Q 在 B 中出现. 如果去除重复数,根据Q的二进制便可以得到答案 现在不去除重复数 结论:每个数都会重复出现2^(n-|β|) 次 证明:摘自https://blog.sengxian.com/algorithms/linear-basis #include<c…
[BZOJ2844]albus就是要第一个出场 Description 已知一个长度为n的正整数序列A(下标从1开始), 令 S = { x | 1 <= x <= n }, S 的幂集2^S定义为S 所有子集构成的集合.定义映射 f : 2^S -> Zf(空集) = 0f(T) = XOR A[t] , 对于一切t属于T现在albus把2^S中每个集合的f值计算出来, 从小到大排成一行, 记为序列B(下标从1开始). 给定一个数, 那么这个数在序列B中第1次出现时的下标是多少呢? I…
CF895C: Square Subsets && [BZOJ2844]albus就是要第一个出场 这两道题很类似,都是线性基的计数问题,解题的核心思想也一样. CF895C Square Subsets 题目链接 题意 给定\(n\)个数,求多少种选数方案使得选出来的数乘积为完全平方数.\(n\leq 100000,a_i\leq70\). 完全平方数的本质就是每个质因子的次数为偶数. 所以我们将每一个数唯一分解,然后记录每个质因子的奇偶状态,就得到了一个个01串.问题就变成了有多少个集…
2844: albus就是要第一个出场 题意:给定一个n个数的集合S和一个数x,求x在S的$2^n$个子集从小到大的异或和序列中最早出现的位置 一开始看错题了...人家要求的是x第一次出现位置不是第x个是谁 求出线性基后我们知道一共有$2^r$个不同的数,再知道每个数出现了几次就好啦 每个数出现了$2^{n-r}$次....因为有$n-r$个线性相关(高斯消元后全0了)的方程异或不影响.... 然后就简单了,从高到低枚举二进制位,异或这一位后小于k就加上 #include <iostream>…