python应用:主题分类(gensim lda)】的更多相关文章

安装第三方包:gensim 首先,执行去停词操作(去除与主题无关的词) #-*-coding:utf8-*- import jieba def stopwordslist(filepath): stopwords = [line.strip() for line in open(filepath, 'r').readlines()] return stopwords def seg_sentence(sentence): sentence_seged = jieba.cut(sentence.s…
版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/qq_39422642/article/details/78730662 这篇文章主要给一些不太喜欢数学的朋友们的,其中基本没有用什么数学公式. 目录 直观理解主题模型 LDA的通俗定义 LDA分类原理 LDA的精髓 主题模型的简单应用-希拉里邮件门 1.直观理解主题模型 听名字应该就知道他讲的是什么?假如有一篇文章text,通过里面的词,来…
文本主题模型之LDA(一) LDA基础 文本主题模型之LDA(二) LDA求解之Gibbs采样算法 文本主题模型之LDA(三) LDA求解之变分推断EM算法(TODO) 在前面我们讲到了基于矩阵分解的LSI和NMF主题模型,这里我们开始讨论被广泛使用的主题模型:隐含狄利克雷分布(Latent Dirichlet Allocation,以下简称LDA).注意机器学习还有一个LDA,即线性判别分析,主要是用于降维和分类的,如果大家需要了解这个LDA的信息,参看之前写的线性判别分析LDA原理总结.文本…
文本主题模型之LDA(一) LDA基础 文本主题模型之LDA(二) LDA求解之Gibbs采样算法 文本主题模型之LDA(三) LDA求解之变分推断EM算法(TODO) 本文是LDA主题模型的第二篇,读这一篇之前建议先读文本主题模型之LDA(一) LDA基础,同时由于使用了基于MCMC的Gibbs采样算法,如果你对MCMC和Gibbs采样不熟悉,建议阅读之前写的MCMC系列MCMC(四)Gibbs采样. 1. Gibbs采样算法求解LDA的思路 首先,回顾LDA的模型图如下: 在Gibbs采样算…
文本主题模型之LDA(一) LDA基础 文本主题模型之LDA(二) LDA求解之Gibbs采样算法 文本主题模型之LDA(三) LDA求解之变分推断EM算法 本文是LDA主题模型的第三篇,读这一篇之前建议先读文本主题模型之LDA(一) LDA基础,同时由于使用了EM算法,如果你对EM算法不熟悉,建议先熟悉EM算法的主要思想.LDA的变分推断EM算法求解,应用于Spark MLlib和Scikit-learn的LDA算法实现,因此值得好好理解. 1. 变分推断EM算法求解LDA的思路 首先,回顾L…
python的数据结构分类: 数值型 int:python3中都是长整形,没有大小限制,受限内存区域的大小 float:只有双精度型 complex:实数和虚数部分都是浮点型,1+1.2J bool:int的子类,仅有2个实例,True.False对应1和0,可以整数直接运算 序列对象 字符串 str.列表list.tuple 键值对 集合set.字典dict 数字的处理: round():四舍六入,五找偶数 In [1]: round(1.5) Out[1]: 2 In [2]: round(…
本文利用gensim进行LDA主题模型实验,第一部分是基于前文的wiki语料,第二部分是基于Sogou新闻语料. 1. 基于wiki语料的LDA实验 上一文得到了wiki纯文本已分词语料 wiki.zh.seg.utf.txt,去停止词后可进行LDA实验. import codecs from gensim.models import LdaModel from gensim.corpora import Dictionary train = [] stopwords = codecs.open…
gensim的LDA算法中很容易提取到每篇文章的主题分布矩阵,但是一般地还需要进一步获取每篇文章归属到哪个主题概率最大的数据,这个在检索gensim文档和网络有关文章后,发现竟然没有. 简单写了一下. #打印每篇文档最高概率主题 for i in lda.get_document_topics(corpus)[:]: listj=[] for j in i: listj.append(j[1]) bz=listj.index(max(listj)) #print(i[bz][0],i,listj…
#coding=utf8 import numpy as np import pandas as pd import re from gensim import corpora, models, similarities import gensim from nltk.corpus import stopwords df = pd.read_csv("./input/HillaryEmails.csv") # 原邮件数据中有很多Nan的值,直接扔了. df = df[['Id', 'E…
Python使用gensim进行文本相似度计算 转于:http://rzcoding.blog.163.com/blog/static/2222810172013101895642665/ 在文本处理中,比如商品评论挖掘,有时需要了解每个评论分别和商品的描述之间的相似度,以此衡量评论的客观性. 评论和商品描述的相似度越高,说明评论的用语比较官方,不带太多感情色彩,比较注重描述商品的属性和特性,角度更客观. 那么Python 里面有计算文本相似度的程序包吗,恭喜你,不仅有,而且很好很强大. 这是从…