Linear Model Selection and Regularization 此博文是 An Introduction to Statistical Learning with Applications in R 的系列读书笔记,作为本人的一份学习总结,也希望和朋友们进行交流学习. 该书是The Elements of Statistical Learning 的R语言简明版,包含了对算法的简明介绍以及其R实现,最让我感兴趣的是算法的R语言实现. [转载时请注明来源]:http://www…
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. "机器学习方法"系列,我本着开放与共享(open and share)的精神撰写,目的是让更多的人了解机器学习的概念,理解其原理,学会应用.希望与志同道合的朋友一起交流,我刚刚设立了了一个技术交流QQ群:433250724,欢迎对算法.技术.应用感兴趣的同学加入,在交流中拉通--算法与技术,让理论研究与实际应用深度融合:也希望能有大牛能来,为大家解惑授业,福泽大众.推广开放与共享的精神.如果人多…
Linear Model Selection and Regularization 此博文是 An Introduction to Statistical Learning with Applications in R 的系列读书笔记,作为本人的一份学习总结,也希望和朋友们进行交流学习. 该书是The Elements of Statistical Learning 的R语言简明版,包含了对算法的简明介绍以及其R实现,最让我感兴趣的是算法的R语言实现. [转载时请注明来源]:http://www…
Linear Model Selection and Regularization 此博文是 An Introduction to Statistical Learning with Applications in R 的系列读书笔记,作为本人的一份学习总结,也希望和朋友们进行交流学习. 该书是The Elements of Statistical Learning 的R语言简明版,包含了对算法的简明介绍以及其R实现,最让我感兴趣的是算法的R语言实现. [转载时请注明来源]:http://www…
一.基础理解 模型正则化(Regularization) # 有多种操作方差,岭回归只是其中一种方式: 功能:通过限制超参数大小,解决过拟合或者模型含有的巨大的方差误差的问题: 影响拟合曲线的两个因子 模型参数 θi (1 ≤ i ≤ n):决定拟合曲线上下抖动的幅度: 模型截距 θ0:决定整体拟合曲线上下位置的高低: 二.岭回归 岭回归(Ridge Regression):模型正则化的一种方式: 解决的问题:模型过拟合: 思路:拟合曲线上下抖动的幅度主要受模型参数的影响,限制参数的大小可以限制…
Spark中的CrossValidation Spark中采用是k折交叉验证 (k-fold cross validation).举个例子,例如10折交叉验证(10-fold cross validation),将数据集分成10份,轮流将其中9份做训练1份做验证,10次的结果的均值作为对算法精度的估计. 10折交叉检验最常见,是因为通过利用大量数据集.使用不同学习技术进行的大量试验,表明10折是获得最好误差估计的恰当选择,而且也有一些理论根据可以证明这一点.但这并非最终结论,争议仍然存在.而且似…
声明:本博客整理自博友@zhouyong计算广告与机器学习-技术共享平台,尊重原创,欢迎感兴趣的博友查看原文. 符号定义 这里定义<深入浅出ML>系列中涉及到的公式符号,如无特殊说明,符号含义均按下述定义解释: 符号 含义 \(x_j\) 第\(j\)维特征 \(x\) 一条样本中的特征向量,\(x=(1, x_1, x_2, \cdots, x_n)\) \(x^{(i)}\) 第\(i\)条样本 \(x_{j}^{(i)}\) 第\(i\)条样本的第\(j\)维特征 \(y^{(i)}\)…
一.范数 L1.L2这种在机器学习方面叫做正则化,统计学领域的人喊她惩罚项,数学界会喊她范数. L0范数  表示向量xx中非零元素的个数. L1范数  表示向量中非零元素的绝对值之和. L2范数  表示向量元素的平方和再开平方 在p范数下定义的单位球(unit ball)都是凸集(convex set,简单地说,若集合A中任意两点的连线段上的点也在集合A中,则A是凸集),但是当0<p<1时,在该定义下的unit ball并不是凸集(注意:我们没说在该范数定义下,因为如前所述,0<p<…
一.一般线性回归遇到的问题 在处理复杂的数据的回归问题时,普通的线性回归会遇到一些问题,主要表现在: 预测精度:这里要处理好这样一对为题,即样本的数量和特征的数量 时,最小二乘回归会有较小的方差 时,容易产生过拟合 时,最小二乘回归得不到有意义的结果 模型的解释能力:如果模型中的特征之间有相互关系,这样会增加模型的复杂程度,并且对整个模型的解释能力并没有提高,这时,我们就要进行特征选择. 以上的这些问题,主要就是表现在模型的方差和偏差问题上,这样的关系可以通过下图说明: (摘自:机器学习实战)…
目录 线性回归--最小二乘 Lasso回归和岭回归 为什么 lasso 更容易使部分权重变为 0 而 ridge 不行? References 线性回归很简单,用线性函数拟合数据,用 mean square error (mse) 计算损失(cost),然后用梯度下降法找到一组使 mse 最小的权重. lasso 回归和岭回归(ridge regression)其实就是在标准线性回归的基础上分别加入 L1 和 L2 正则化(regularization). 本文的重点是解释为什么 L1 正则化会…