1×1卷积的用途(Network in Network)】的更多相关文章

1×1卷积,又称为Network in Network 如果卷积的输出输入都只是一个平面,那么1x1卷积核并没有什么意义,它是完全不考虑像素与周边其他像素关系. 但卷积的输出输入是长方体,所以1x1卷积实际上是对每个像素点,在不同的channels上进行线性组合(信息整合),且保留了图片的原有平面结构,调控depth,从而完成升维或降维的功能. 如下图所示,如果选择2个filters的1x1卷积层,那么数据就从原本的depth 3 降到了2.若用4个filters,则起到了升维的作用. 1. 相…
目录 Q1:CNN 中的全连接层为什么可以看作是使用卷积核遍历整个输入区域的卷积操作? Q2:1×1 的卷积核(filter)怎么理解? Q3:什么是感受野(Receptive field)? Q4:对含有全连接层的 CNN,输入图像的大小必须固定? Q5:什么是 Global Average Pooling(GAP)? Q6:什么是 depthwise separable convolution?Depthwise convolution 和 pointwise convolution 分别又…
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术感兴趣的同学加入. 最近接下来几篇博文会回到神经网络结构的讨论上来,前面我在"深度学习方法(五):卷积神经网络CNN经典模型整理Lenet,Alexnet,Googlenet,VGG,Deep Residual Learning"一文中介绍了经典的CNN网络结构模型,这些可以说已经是家喻户晓的网络结构,在那一文结尾,我提到"是时候动一…
全连接神经网络(Fully connected neural network)处理图像最大的问题在于全连接层的参数太多.参数增多除了导致计算速度减慢,还很容易导致过拟合问题.所以需要一个更合理的神经网络结构来有效地减少神经网络中参数的数目.而卷积神经网络(Convolutional Neural Network,CNN)可以做到. 1. 卷积神经网络构成 图 1:卷积神经网络 输入层 整个网络的输入,一般代表了一张图片的像素矩阵.图 1中最左侧三维矩阵代表一张输入的图片,三维矩阵的长.宽代表了图…
Network In Network 是13年的一篇paper 引用:Lin M, Chen Q, Yan S. Network in network[J]. arXiv preprint arXiv:1312.4400, 2013. 文章的新点: 1. 采用 mlpcon 的结构来代替 traditional 卷积层: 2. remove 卷积神经网络最后的 全连接层,采用 global average pooling 层代替: mplconv 结构的提出: conventional 的卷积层…
4.2深度卷积网络 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献 Inception网络 --Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions[J]. 2014:1-9. 2.5网络中的网络与1*1卷积 Network in Network 在架构内容设计方面,一个比较有帮助的想法是使用\(1*1\)的卷积.输入一张\(6*6*1\)的单通道图片,使用一个\(1*1*1\)的小卷积核.结果相当于把原有…
目录 写在前面 mlpconv layer实现 Global Average Pooling 网络结构 参考 博客:blog.shinelee.me | 博客园 | CSDN 写在前面 <Network in Network>简称NIN,出自颜水成老师团队,首次发表在arxiv的时间为2013年12月,至20190921引用量为2871(google scholar). NIN的网络结构仍是在AlexNet基础上修改而来,其主要创新点如下: 提出了mlpconv layer:mlpconv l…
作者:wuliytTaotao 出处:https://www.cnblogs.com/wuliytTaotao/ 本作品采用知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议进行许可,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接.         原文地址: https://www.cnblogs.com/wuliytTaotao/p/9488045.html     -------------------------------------------…
论文Network in network (ICLR 2014)是对传统CNN的改进,传统的CNN就交替的卷积层和池化层的叠加,其中卷积层就是把上一层的输出与卷积核(即滤波器)卷积,是线性变换,然后再加上一个非线性变换的激活函数(比如:relu),但是在NIN中并有像CNN中这样, 1.它们的区别之一是卷积层不一样: CNN: 卷积层= 卷积+激活函数 NIN:卷积层=mlpconv层= 卷积+MLP = 卷积+1*1卷积+1*1卷积=卷积+relu+1*1卷积+relu+1*1卷积+relu…
Network In Network学习笔记 原文地址:http://blog.csdn.net/hjimce/article/details/50458190 作者:hjimce 一.相关理论 本篇博文主要讲解2014年ICLR的一篇非常牛逼的paper:<Network In Network>,过去一年已经有了好几百的引用量,这篇paper改进了传统的CNN网络,采用了少量的参数就松松击败了Alexnet网络,Alexnet网络参数大小是230M,采用这篇paper的算法才29M,减小了将…