一.Momentum 1. 计算dw.db. 2. 定义v_db.v_dw \[ v_{dw}=\beta v_{dw}+(1-\beta)dw \] \[ v_{db}=\beta v_{db}+(1-\beta)db \] 3. 更新dw.db \[ dw=w-\alpha v_{dw} \] \[ db=b-\alpha v_{db} \] 二.RMSprop 1. 计算dw.db. 2. 定义s_db.s_dw (这里的平方是元素级的) \[ s_{dw}=\beta s_{dw}+(1…
https://zhuanlan.zhihu.com/p/32626442 骆梁宸 paper插画师:poster设计师:oral slides制作人 445 人赞同了该文章 楔子 前些日在写计算数学课的期末读书报告,我选择的主题是「分析深度学习中的各个优化算法」.在此前的工作中,自己通常就是无脑「Adam 大法好」,而对算法本身的内涵不知所以然.一直希望能抽时间系统的过一遍优化算法的发展历程,直观了解各个算法的长处和短处.这次正好借着作业的机会,补一补课. 本文主要借鉴了 @Juliuszh…
所谓Mini-batch梯度下降法就是划分训练集和测试集为等分的数个子集,比如原来有500W个样本,将其划分为5000个baby batch,每个子集中有1000个样本,然后每次对一个mini-batch进行梯度下降 mini-batch大小 = m: 极限情况下,当mini-batch的单个子集样本数量和原集合大小一致都为m时,也就是说对原样本只划分一个子集,这意味着没有划分,此时的梯度下降法为原始的Batch梯度下降 batch方法意味着每次迭代对大量的数据进行处理,这意味着在进行深度神经网…
首先感谢吴恩达老师的免费公开课,以下图片均来自于Andrew Ng的公开课 指数加权平均法 在统计学中被称为指数加权移动平均法,来看下面一个例子: 这是伦敦在一些天数中的气温分布图 Vt = βVt-1 + (1 - β)θt  β指的是加权系数 0<β<1 θt 指的是当前时刻的温度 当β=0.9的时候 1/1-β = 10 所以看到上图的红线其实就是考虑了10天之内的平均气温,其拟合度较好 当β=0.98的时候 1/1-β = 50 所以上图中的绿线是考虑了50天之内的平均气温,于是这种平…
在机器学习.深度学习中使用的优化算法除了常见的梯度下降,还有 Adadelta,Adagrad,RMSProp 等几种优化器,都是什么呢,又该怎么选择呢? 在 Sebastian Ruder 的这篇论文中给出了常用优化器的比较,今天来学习一下:https://arxiv.org/pdf/1609.04747.pdf 本文将梳理: 每个算法的梯度更新规则和缺点 为了应对这个不足而提出的下一个算法 超参数的一般设定值 几种算法的效果比较 选择哪种算法 0.梯度下降法深入理解 以下为个人总结,如有错误…
Coursera吴恩达<优化深度神经网络>课程笔记(2)-- 优化算法 深度机器学习中的batch的大小 深度机器学习中的batch的大小对学习效果有何影响? 1. Mini-batch gradient descent SGD VS BGD VS MBGD 3. 指数加权平均(Exponentially weighted averages) 这种滑动平均算法称为指数加权平均(exponentially weighted average)其一般形式为: 值决定了指数加权平均的天数,近似表示为:…
在调整模型更新权重和偏差参数的方式时,你是否考虑过哪种优化算法能使模型产生更好且更快的效果?应该用梯度下降,随机梯度下降,还是Adam方法? 这篇文章介绍了不同优化算法之间的主要区别,以及如何选择最佳的优化方法. 什么是优化算法? 优化算法的功能,是通过改善训练方式,来最小化(或最大化)损失函数E(x). 模型内部有些参数,是用来计算测试集中目标值Y的真实值和预测值的偏差程度的,基于这些参数,就形成了损失函数E(x). 比如说,权重(W)和偏差(b)就是这样的内部参数,一般用于计算输出值,在训练…
背景 在之前的文章中,我们已经提到过团队在UI自动化这方面的尝试,我们的目标是实现基于 单一图片到代码 的转换,在这个过程不可避免会遇到一个问题,就是为了从单一图片中提取出足够的有意义的结构信息,我们必须要拥有从图片中切割出想要区块(文字.按钮.商品图片等)的能力,而传统切割算法遇到复杂背景图片往往就捉襟见肘了(见下图),这个时候,我们就需要有能力把复杂前后景的图片划分为各个层级图层,再交给切割算法去处理,拿到我们期望的结构信息. 经过传统切割算法处理,会无法获取图片结构信息,最终只会当成一张图…
前面我们学习过深度学习中用于加速网络训练.提升网络泛化能力的两种策略:Batch Normalization(Batch Normalization)和Layer Normalization(LN).今天讨论另一种与它们类似的策略:Weight Normalization(Weight Normalization).Weight Normalization是Batch Normalization的一种变体,与Batch Normalization最大不同点:对神经网络的权值向量W进行参数重写Re…
AFM:Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks 模型入上图所示,其中sparse iput,embedding layer,pair-wise interaction layer都和FM一样,后面加入了一个attention net生成一个关于特征交叉项的权重,将FM原来的二次项累加变成加权累加.这里的attention net其实…