[转http://www.cppblog.com/abilitytao/archive/2009/09/02/95147.html  ->  http://yejingx.ycool.com/post.2801156.html:http://hi.baidu.com/cjhh314/blog/item/ded8d31f15d7510c304e1591.html] 二分图最小覆盖的Konig定理及其证明 一.定义 二分图: 顶点可以分类两个集合X和Y,所有的边关联在两个顶点中,恰好一个属于集合X,…
[CF981F]Round Marriage(二分答案,二分图匹配,Hall定理) 题面 CF 洛谷 题解 很明显需要二分. 二分之后考虑如果判定是否存在完备匹配,考虑\(Hall\)定理. 那么如果不合法,假设我们存在一个极小的集合满足连到右侧的点数小于集合大小.因为是极小的,所以删去一个点之后就可以匹配,那么意为着某个点连出去的点和其他所有点有交,既然有交,那么一定这一段区间都可以加入进来形成一个不合法的集合.所以我们可以把存在一个点集不合法变成存在一段连续区间不合法. 假设每个点连向另外一…
(附一道例题) Time Limit: 1000 ms   Memory Limit: 128 MB Description 最小点覆盖是指在二分图中,用最小的点集覆盖所有的边.当然,一个二分图的最小点覆盖可能有很多种. 现在给定一个二分图,请你把图中的点分成三个集合: 如果在任何一种最小点覆盖中都不包含这个点,则认为该点属于N集合. 如果在任何一种最小点覆盖中都包含这个点,则认为该点属于A集合. 如果一个点既不属于N集合,又不属于A集合,则认为该点属于E集合. Input 第一行包含三个整数n…
题意: 给定一个H行W列的矩阵,在矩阵的格点上放带权值的卡片(一个点上能放多张). 现在从每行每列各拿走一张卡片(没有可以不拿),求可以拿到的最大权值. 卡片数N<=1e5,H,W<=1e5 思路: 显然可以构造成一个最大费用流模型:每张卡片到它对应的行列各有一条费用0,容量1的边:源点到每张卡片有一条费用为卡片权值,容量1的边:每个行列到汇点有一条费用0,容量1的边.但是边数有5e5,应该会超时吧? 观察这个图发现除去源点和汇点是一张二分图,想到是否可以利用二分图的性质简化问题. 手动模拟一…
Description Bessie wants to navigate her spaceship through a dangerous asteroid field in the shape of an N x N grid (1 <= N <= 500). The grid contains K asteroids (1 <= K <= 10,000), which are conveniently located at the lattice points of the…
嗯... 题目链接:http://poj.org/problem?id=3041 这道题的思想比较奇特: 把x坐标.y坐标分别看成是二分图两边的点,如果(x,y)上有行星,则将(x,y)之间连一条边,而我们要做的就是要找尽量少的点把所有的边覆盖,即为最小点覆盖问题,根据König定理:最小覆盖点数=最大匹配数,所以就可以用匈牙利算法求最大匹配了. AC代码: #include<cstdio> #include<cstring> #include<iostream> us…
大意: 给定棋盘, 每次消除一行或一列, 求最小次数使得消除完所有'*'. 裸的二分图最小点覆盖. 二分图的最小点覆盖等于最大匹配, 输出方案时从所有左部未盖点开始标记交替路上的点, 最后左部所有未标记的点加上右部所有标记的点即为最小点覆盖. #include <iostream> #include <sstream> #include <algorithm> #include <cstdio> #include <math.h> #includ…
[题目大意] 在n*n的网格上有n个点,每次删除一行或者一列,问至少要删除几次才能删除完全部的这些店? [思路] 在国庆最后一天到来前,把二分图的三个基本情况[最小点覆盖][DAG图的最小路径覆盖]和[二分图的最大独立集]全部复习了一遍. 这道题是非常典型的最小点覆盖,指的是用最少的点让每条边都至少和两个集合中的某一个点关联. 最小点覆盖=二分图最大匹配数. 对于这道题而言,我们把横坐标作为集合X,纵坐标作为集合Y,对于点(x,y),由X中的x连向Y中的y.对于每条边,只要x和y中有一个被删除即…
题意:在方格图上打小怪,每次可以清除一整行或一整列的小怪,问最少的步数是多少,又应该在哪些位置操作(对输出顺序没有要求). 分析:最小覆盖问题 这是一种在方格图上建立的模型:令S集表示“行”,T集表示“列”,那么小怪站的位置w(i,j),就是二分图上的边.如此建图,那么每次清除,就是把与某个点相连的边全部清除,问最少选择多少个点.(这也是最小点覆盖的概念:选择尽量少的点,使得每条边至少有一个端点被选中) 这里有一个König定理:最大二分匹配数==最小覆盖点数. 既然是求最小点覆盖,那么自然是选…
前言 博主很笨 ,如有纰漏,欢迎在评论区指出讨论. 二分图的最大匹配使用 \(Dinic\) 算法进行实现,时间复杂度为 \(O(n\sqrt{e})\),其中, \(n\)为二分图中左部点的数量, \(e\) 为二分图中的边数.若是匈牙利算法,时间复杂度为 \(O(nm)\) , \(m\) 为二分图中右部点的数量,不建议使用. 文章中的例题链接. König定理 定理内容:二分图最小点覆盖的点的数量等于二分图最大匹配的边的数量. 构造方法 \(+\) 简单证明: 首先求出二分图中的最大匹配,…