51nod 1135 原根 就是原根...】的更多相关文章

题目链接:51nod 1135 原根 设 m 是正整数,a是整数,若a模m的阶等于φ(m),则称 a 为 模m的一个原根.(其中φ(m)表示m的欧拉函数) 阶:gcd(a,m)=1,使得成立的最小的 r,称为 a 对 模m 的 阶. φ(m):在[1,m)的区间内与m互质的数的个数. 求模素数p的原根a的方法: 因为p为素数,所以φ(p)=p-1, 这题就是要找最小的a使得 a^(p-1)%p = 1 成立(根据费马小定理,该式一定成立), 先求p-1所有不同的 质因子 p1,p2-pm, 对任…
题意 题目链接 Sol 可以证明素数的原根不会超过他的\(\frac{1}{4}\) 那么预处理出\(P - 1\)的所有的质因数\(p_1, p_2 \dots p_k\),暴力判断一下,如果$\exists i, a^{\frac{P - 1}{p_i}} \equiv 1 \pmod {P - 1} $ 那么说明\(a\)不是\(P\)的原根,因为根据原根的定义,需要保证\(P-1\)是第一个满足\(a^{P - 1} \equiv 1 \pmod {P - 1}\)的数 #include…
题目链接 建议与上一篇欧拉函数介绍结合食用. 知识点:1.阶:a和模m互质,使a^d≡1(mod m)成立的最小正整数d称为a对模m的阶(指数)   例如: 2^2≡1(mod3),2对模3的阶为2; 2^3≡1(mod7),2对模7的阶为3;2.欧拉函数φ(m):在[1,m)的区间内与m互质的数的个数.可见前一篇blog3.设m是正整数,a是整数,若a模m的阶等于φ(m),则称a为模m的一个原根. 求模素数p的原根a的方法: 对质数 p, φ(p) = p-1, 这题就是要找最小的a使得 a^…
设m是正整数,a是整数,若a模m的阶等于φ(m),则称a为模m的一个原根.(其中φ(m)表示m的欧拉函数)   给出1个质数P,找出P最小的原根. Input 输入1个质数P(3 <= P <= 10^9) Output 输出P最小的原根. Input示例 3 Output示例 2解:使用快速幂的时候小心int爆了. #include <stdio.h> #include <math.h> #include <string.h> #define CLR(x)…
%%% dalao Orz ,筛素数到sqrt(n),分解ϕ(p),依次枚举判断就好了 #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #include<cmath> #define N 100000 #define LL long long using namespace std; LL prime[100010],tot,cnt,p[10001…
1135 原根  基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 设m是正整数,a是整数,若a模m的阶等于φ(m),则称a为模m的一个原根.(其中φ(m)表示m的欧拉函数) 给出1个质数P,找出P最小的原根. Input 输入1个质数P(3 <= P <= 10^9) Output 输出P最小的原根. Input示例 3 Output示例 2 AC代码 就是找到最小的数x,使 #include <stdio.h> #include &l…
因为给定的模数P保证是素数,所以P一定有原根. 根据原根的性质,若\(g\)是\(P\)的原根,则\(g^k\)能够生成\([1,P-1]\)中所有的数,这样的k一共有P-2个. 则\(a_i*a_j(mod\ P)=a_k\) 就可以转化为\(g^i*g^j(mod\ P) = g^{i+j}(mod\ P)=g^k\). 问题转化为了求有多少对有序的<i,j>满足 \((i+j)(mod\ (P-1)) = k\). 求出原根后,对\([1,P-1]\)中的每个数编号, 统计每个编号出现的…
\(\color{#0066ff}{ 题目描述 }\) 小C有一个集合S,里面的元素都是小于M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数列中的每个数都属于集合S.小C用这个生成器生成了许多这样的数列.但是小C有一个问题需要你的帮助:给定整数x,求所有可以生成出的,且满足数列中所有数的乘积mod M的值等于x的不同的数列的有多少个.小C认为,两个数列{Ai}和{Bi}不同,当且仅当至少存在一个整数i,满足Ai≠Bi.另外,小C认为这个问题的答案可能很大,因此他只需要你…
20分特判,一个puts("1")一个快速幂,不讲. 50%算法: 上次就讲了,可是应该还是有像 xuefen某 或 Dybal某 一样没听的. 用a×inv(b)%mod来表示分数的时候,这个分数值可加可乘(有空证明) 像是一个dp题啊. 初状态是1方案数为1,然后做乘法转移不就好了嘛? 设dp[i][j]表示进行了i次操作后所得的值为j dp[i][j*a[k]%mod]+=dp[i-1][j]; 复杂度O(mod2×m) #include<iostream> #inc…
原根&离散对数 1.原根 1.定义: 定义\(Ord_m(a)\)为使得\(a^d\equiv1\;(mod\;m)\)成立的最小的d(其中a和m互质) 由欧拉定理可知: \(Ord\le\Phi(m)\) 当\(Ord_m(a)=\Phi(m)时,称a是模m意义下m的一个原根\)(记住原根是a,不是d!) 2.原根的性质: 1.具有原根的数字仅有以下几种形式:\(2,4,p^n,2·p^n\)(p是奇质数) 2.一个数的最小原根的大小不超过 \(m^{\frac14}\) 3.若g是m的一个原…