【莫比乌斯反演】BZOJ2820 YY的GCD】的更多相关文章

BZOJ2820 YY的GCD Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种傻×必然不会了,于是向你来请教……多组输入 Input 第一行一个整数T 表述数据组数接下来T行,每行两个正整数,表示N, M Output T行,每行一个整数表示第i组数据的结果 Sample Input 2 10 10 100 100 Sample Output 30 2791 H…
/** 题目:BZOJ2820 YY的GCD 链接:http://www.cogs.pro/cogs/problem/problem.php?pid=2165 题意:神犇YY虐完数论后给傻×kAc出了一题 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对 kAc这种傻×必然不会了,于是向你来请教…… T = 10000 N, M <= 10000000 思路: f(n)表示gcd==n的对数. g(n)表示gcd的n的倍数的对数…
[BZOJ2820]YY的GCD 试题描述 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必然不会了,于是向你来请教……多组输入 输入 第一行一个整数T 表述数据组数接下来T行,每行两个正整数,表示N, M 输出 T行,每行一个整数表示第i组数据的结果 输入示例 输出示例 数据规模及约定 T = 10000N, M <= 10000000 题解 设 易知 ……式1 根据莫比…
Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必然不会了,于是向你来请教……多组输入 Input 第一行一个整数T 表述数据组数接下来T行,每行两个正整数,表示N, M Output T行,每行一个整数表示第i组数据的结果 Sample Input 2 10 10 100 100 Sample Output 30 2791 HINT T = 10000 N…
Description 求有多少对(x,y)的gcd为素数,x<=n,y<=m.n,m<=1e7,T<=1e4. Solution 因为题目要求gcd为素数的,那么我们就只考虑素数mu的贡献就行了 对于p,对于k*p的贡献是mu[k] 然后加上整除分块优化就行了 p可以筛完素数处理,处理复杂度为O(n/log*log)正好为O(n) Code #include<cstdio> #include<algorithm> #include<cstring&g…
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2820 题意:多次询问,求1<=x<=N, 1<=y<=M且gcd(x,y)为质数有多少对. 首先,    由于这里是多次询问,并且数据很大,显然不能直接求解,需要做如下处理.. 整数的除法是满足结合律的,然后我们设T=p*d,有: 注意到后面部分是可以预处理出来的,那么整个ans就可以用分块处理来求了,设 那么有,考虑当p|x时,根据莫比菲斯mu(x)的性质,px除以其它非…
题解 题意 题目链接 Sol 反演套路题.. 不多说了,就是先枚举一个质数,再枚举一个约数然后反演一下. 最后可以化成这样子 \[\sum_{i = 1}^n \frac{n}{k} \frac{n}{k} \sum_{p \in P, p | k} \mu(\frac{K}{p})\] 然后后面的那一坨可以暴力预处理..复杂度不清楚,但是显然严格小于调和级数,所以也没啥大问题. /* */ #include<bits/stdc++.h> #define LL long long //#def…
[题目大意] 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对. [思路] 太神了这道题……蒟蒻只能放放题解:戳,明早再过来看看还会不会推导过程…… 实用的结论: 嗯…… /************************************************************** Problem: 2820 Language: C++ Result: Accepted Time:4164 ms Memory:1966…
题目大意: 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对 这里就抄一下别人的推断过程了 后面这个g(x) 算的方法就是在线性筛的时候只考虑当前的数最小因子,如果进来的最小因子不存在,相当于在之前那个数的基础上的每个mu值都多加了一个质数,那么 这些mu值就要取反,如果已经包含了这个最小因子,我这里另外进行了跟之前类似的讨论方法,在代码中写着 因为这题目数据比较大,这里求解的时候不应该线性求,因为总是有一段区间的n/i*(m/i)值…
第一次做莫比乌斯反演,推式子真是快乐的很啊(棒读) 前置 若函数\(F(n)\)和\(f(d)\)存在以下关系 \[ F(n)=\sum_{n|d}f(d) \] 则可以推出 \[ f(n)=\sum_{n|d}\mu(\frac{d}{n})F(d) \] 这就是莫比乌斯反演 题目要求 求\(gcd(a,b)=\{prime\},a\in\left[1,n\right],b\in\left[1,m\right]\) 思路 根据题意所以设出\(f(n)\)表示\(gcd(a,b)=n\)的\(a…