机器学习技法:12 Neural Network】的更多相关文章

Roadmap Motivation Neural Network Hypothesis Neural Network Learning Optimization and Regularization Summary…
Roadmap Motivation Neural Network Hypothesis Neural Network Learning Optimization and Regularization Summary…
作业文件: machine-learning-ex4 1. 神经网络 在之前的练习中,我们已经实现了神经网络的前反馈传播算法,并且使用这个算法通过作业给的参数值预测了手写体数字.这个练习中,我们将实现反响传播算法来学习神经网络的参数. 1.1 可视化数据 这一节的代码将会加载数据,并且以二维的格式展现出来.运行代码会将训练集加载到变量X与y中. load('ex4data1.mat'); m = size(X, 1); % Randomly select 100 data points to d…
动机(Motivation) 对于非线性分类问题,如果用多元线性回归进行分类,需要构造许多高次项,导致特征特多学习参数过多,从而复杂度太高. 神经网络(Neural Network) 一个简单的神经网络如下图所示,每一个圆圈表示一个神经元,每个神经元接收上一层神经元的输出作为其输入,同时其输出信号到下一层,其中每一层的第一个神经元称为bias unit,它是额外加入的其值为1,通常用+1表示,下图用虚线画出. 符号说明: $a_i^{(j)}$表示第j层网络的第i个神经元,例如下图$a_1^{(…
之前我们介绍了Recurrent neural network (RNN) 的原理: http://blog.csdn.net/matrix_space/article/details/53374040 http://blog.csdn.net/matrix_space/article/details/53376870 这里,我们构建一个简单的RNN网络,激励函数我们用sigmoid 函数,利用这个网络,我们来测试二进制数的运算.网络重复模块的表达式是: ht=σ(Wh⋅ht−1+Wi⋅Xt)…
I am using pybrain on my Linuxmint 13 x86_64 PC. As what it is described: PyBrain is a modular Machine Learning Library for Python. Its goal is to offer flexible, easy-to-use yet still powerful algorithms for Machine Learning Tasks and a variety of p…
由perceptron线性组成的一个神经网络: 通过赋予g不同的权值,来实现不同的切分功能: 但有的切分只通过一次特征转换是不够的,需要多次转换,如下: Neural Network Hypothesis:为了便于优化,将sign(离散)变成tanh,这个函数相当于regression的拉伸与平移: 然后给了一个物理解释:衡量x与权值向量在模式上的的相似程度 那么怎么得到权值w呢:可以在最后的错误上对各个权值求偏微分,得到权值变化的方向: 直接求微分不好求,可先求最后一个: 给了一个算法: 这样…
这节课主要讲述了RBF这类的神经网络+Kmeans聚类算法,以及二者的结合使用. 首先回归的了Gaussian SVM这个模型: 其中的Gaussian kernel又叫做Radial Basis Function kernel 1)radial:表示输入点与center点的距离 2)basis function:表示‘combined’ 从这个角度来看,Gaussian Kernel SVM可以看成许多小的radial hypotheses的线性组合(前面的系数就是SV的alphan和yn)…
Progressive Neural Network  Google DeepMind 摘要:学习去解决任务的复杂序列 --- 结合 transfer (迁移),并且避免 catastrophic forgetting (灾难性遗忘) --- 对于达到 human-level intelligence 仍然是一个关键性的难题.本文提出的 progressive networks approach 朝这个方向迈了一大步:他们对 forgetting 免疫,并且可以结合 prior knowledg…
作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 本文翻译自 RECURRENT NEURAL NETWORKS TUTORIAL, PART 2 – IMPLEMENTING A RNN WITH PYTHON, NUMPY AND THEANO . github地址 在这篇博文中,我们将会使用Python从头开始实现一个循环神经网络,并且利用Theano(一个在GPU上执行操作的库)优化原始的实现.所有的代码…