[POJ 2248]Addition Chains】的更多相关文章

[题目描述] An addition chain for n is an integer sequence with the following four properties: a0 = 1 am = n a0 < a1 < a2 < ... < am-1 < am For each k (1<=k<=m) there exist two (not necessarily different) integers i and j (0<=i, j<=k…
Description An addition chain for n is an integer sequence with the following four properties: a0 = 1 am = n a0 < a1 < a2 < ... < am-1 < am For each k (1<=k<=m) there exist two (not necessarily different) integers i and j (0<=i, j&…
题目链接:http://bailian.openjudge.cn/practice/2248 题解: 迭代加深DFS. DFS思路:从目前 $x[1 \sim p]$ 中选取两个,作为一个新的值尝试放入 $x[p+1]$. 迭代加深思路:设定一个深度限制,一旦到达这个界限,即继续往下搜索:该深度限制从 $1$ 开始,每次自加 $1$.这么做的好处是,正好也符合题目要求的最短的数组长度. AC代码: #include<bits/stdc++.h> using namespace std; ];…
原题 给出数n,求出1......n 一串数,其中每个数字分解的两个加数都在这个序列中(除了1,两个加数可以相同),要求这个序列最短. ++m,dfs得到即可.并且事实上不需要提前打好表,直接输出就可以. #include<cstdio> using namespace std; int dep=0,n; int a[102]; bool dfs(int step) { if(step>dep) return a[dep]==n; for(int i=0;i<step;i++) {…
迭代加深dfs 每次控制序列的长度,依次加深搜索 有几个剪枝: 优化搜索顺序,从大往下枚举i, j这样能够让序列中的数尽快逼近n 对于不同i,j和可能是相等的,在枚举的时候用过的数肯定不会再被填上所以可以去重(记得回溯) #include <iostream> #include <cstring> #include <cstdio> #define INF 0x3f3f3f3f using namespace std; typedef long long ll; inl…
Addition Chains Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5454   Accepted: 2923   Special Judge Description An addition chain for n is an integer sequence <a0, a1,a2,...,am="">with the following four properties: a0 = 1 a…
  Addition Chains  An addition chain for n is an integer sequence  with the following four properties: a0 = 1 am = n a0<a1<a2<...<am-1<am For each k ( ) there exist two (not neccessarily different) integers i and j ( ) with ak =ai +aj You a…
1443:[例题4]Addition Chains 题解 注释在代码里 注意优化搜索顺序以及最优化剪枝 代码 #include<iostream> #include<cstdio> #include<algorithm> #include<cmath> #include<cstring> #include<string> #include<queue> #include<functional> using na…
Addition Chains 题面 对于一个数列 \(a_1,a_2 \dots a_{m-1},a_m\) 且 \(a_1<a_2 \dots a_{m-1}<a_m\). 数列中的一个数 \(a_k(2<k<=m)\) ,都有两个数 \(a_i,a_j(1<=i,j<k)\) 满足 \(a_i+a_j=a_k\)( \(i\) 可以等于\(j\) ). 换句话说就是 \(a_k\) 前面有两个数可以加起来等于 \(a_k\)​ .这种数列就是加法链. 题目输入一个…
An addition chain for n is an integer sequence <a0, a1,a2,...,am=""> with the following four properties: a0 = 1 am = n a0 < a1 < a2 < ... < am-1 < am For each k (1<=k<=m) there exist two (not necessarily different) int…