class-朴素贝叶斯NaiveBayes】的更多相关文章

朴素贝叶斯(Naïve Bayes) 介绍 Byesian算法是统计学的分类方法,它是一种利用概率统计知识进行分类的算法.在许多场合,朴素贝叶斯分类算法可以与决策树和神经网络分类算法想媲美,该算法能运用到大型数据库中,且方法简单,分类准确率高,速度快,这个算法是从贝叶斯定理的基础上发展而来的,贝叶斯定理假设不同属性值之间是不相关联的.但是现实说中的很多时候,这种假设是不成立的,从而导致该算法的准确性会有所下降. 运用场景 1.医生对病人进行诊断就是一个典型的分类过程,任何一个医生都无法直接看到病…
1. 原理和理论基础(参考) 2. Spark代码实例: 1)windows 单机 import org.apache.spark.mllib.classification.NaiveBayes import org.apache.spark.mllib.linalg.Vectors import org.apache.spark.mllib.regression.LabeledPoint import org.apache.spark.{SparkConf, SparkContext} obj…
Naïve Bayes(朴素贝叶斯)分类算法的实现 (1) 简介: (2)   算法描述: (3) <?php /* *Naive Bayes朴素贝叶斯算法(分类算法的实现) */ /* *把.txt中的内容读到数组中保存 *$filename:文件名称 */ //-------------------------------------------------------------------- function getFileContent($filename) { $array = ar…
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 一.贝叶斯网络与朴素贝叶斯的区别 朴素贝叶斯的假设前提有两个第一个为:各特征彼此独立:第二个为且对被解释变量的影响一致,不能进行变量筛选.但是很多情况这一假设是无法做到的,比如解决文本分类时,相邻词的关系.近义词的关系等等.彼此不独立的特征之间的关系没法通过朴素贝叶斯分类器训练得到,同时这种不独立性也给问题的解决方案引入了更多的复杂性[1].…
对于给定的训练数据集,朴素贝叶斯法首先基于iid假设学习输入/输出的联合分布:然后基于此模型,对给定的输入x,利用贝叶斯定理求出后验概率最大的输出y. 一.目标 设输入空间是n维向量的集合,输出空间为类标记集合= {c1, c2, ..., ck}.X是定义在上的随机变量,Y是定义在上的随机变量.P(X, Y)是X和Y的联合概率分布.训练数据集 T = {(x1, y1), (x2, y2), ..., (xN, yN)}由P(X, Y)独立同分布产生. 朴素贝叶斯法的学习目标是习得联合概率分布…
贝叶斯法则   机器学习的任务:在给定训练数据A时,确定假设空间B中的最佳假设.   最佳假设:一种方法是把它定义为在给定数据A以及B中不同假设的先验概率的有关知识下的最可能假设   贝叶斯理论提供了一种计算假设概率的方法,基于假设的先验概率.给定假设下观察到不同数据的概率以及观察到的数据本身 先验概率和后验概率   用P(A)表示在没有训练数据前假设A拥有的初始概率.P(A)被称为A的先验概率.  先验概率反映了关于A是一正确假设的机会的背景知识  如果没有这一先验知识,可以简单地将每一候选假…
''' 数据集:Mnist 训练集数量:60000 测试集数量:10000 ''' import numpy as np import time def loadData(fileName): ''' 加载文件 :param fileName:要加载的文件路径 :return: 数据集和标签集 ''' # 存放数据及标记 dataArr = []; labelArr = [] # 读取文件 fr = open(fileName) # 遍历文件中的每一行 for line in fr.readli…
朴素贝叶斯算法要理解一下基础:    [朴素:特征条件独立   贝叶斯:基于贝叶斯定理] 1朴素贝叶斯的概念[联合概率分布.先验概率.条件概率**.全概率公式][条件独立性假设.]   极大似然估计 2优缺点     [优点: 分类效率稳定:对缺失数据不敏感,算法比较简单,常用于文本分类:在属性相关性较小时,该算法性能最好    缺点:假设属性之间相互独立:先验概率多取决于假设:对输入数据的表达形式很敏感] 3先验概率.后验概率 先验概率的计算比较简单,没有使用贝叶斯公式: 而后验概率的计算,要…
朴素贝叶斯 算法介绍: 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法. 朴素贝叶斯的思想基础是这样的:对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率,在没有其它可用信息下,我们会选择条件概率最大的类别作为此待分类项应属的类别. 朴素贝叶斯分类的正式定义如下: 1.设 为一个待分类项,而每个a为x的一个特征属性. 2.有类别集合 . 3.计算 . 4.如果 ,则 . 那么现在的关键就是如何计算第3步中的各个条件概率.我们可以这么做: 1.找到一个已知分类的待分类项集合,这…
原创文章,转载请注明: 转载自http://www.cnblogs.com/tovin/p/4042467.html 本文主要以mllib 1.1版本为基础,分析朴素贝叶斯的基本原理与源码 一.基本原理 理论上,概率模型分类器是一个条件概率模型. 独立的类别变量有若干类别,条件依赖于若干特征变量 ,,...,.但问题在于如果特征数量较大或者每个特征能取大量值时,基于概率模型列出概率表变得不现实.所以我们修改这个模型使之变得可行. 贝叶斯定理有以下式子: 对于朴素贝叶斯,它的特征变量,,...,是…