版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com 前面通过数据增强,ResNet-34残差网络识别CIFAR10,准确率达到了92.6. 这里对训练过程增加2个处理: 1.训练数据集做进一步处理:对图片随机加正方形马赛克. 2.每50个epoch,学习率降低0.1倍. 代码具体修改如下: 自定义transform: class Cutout(object): def __init__(self, hole_size): # 正方形马赛克的边长,像素…
版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com CNN的层数越多,能够提取到的特征越丰富,但是简单地增加卷积层数,训练时会导致梯度弥散或梯度爆炸. 何凯明2015年提出了残差神经网络,即Reset,并在ILSVRC-2015的分类比赛中获得冠军. ResNet可以有效的消除卷积层数增加带来的梯度弥散或梯度爆炸问题. ResNet的核心思想是网络输出分为2部分恒等映射(identity mapping).残差映射(residual mapping)…
版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com 在前一篇中的ResNet-34残差网络,经过减小卷积核训练准确率提升到85%. 这里对训练数据集做数据增强: 1.对原始32*32图像四周各填充4个0像素(40*40),然后随机裁剪成32*32. 2.按0.5的概率水平翻转图片. 代码具体修改如下: transform_train = transforms.Compose([ # 对原始32*32图像四周各填充4个0像素(40*40),然后随机裁剪…
版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com 在前一篇中的ResNet-34残差网络,经过训练准确率只达到80%. 这里对网络做点小修改,在最开始的卷积层中用更小(3*3)的卷积核,并且不缩小图片尺寸,相应的最后的平均池化的核改为4*4. 具体修改如下: class ResNet34(nn.Module): def __init__(self, block): super(ResNet34, self).__init__() # 初始卷积层核池…
深度炼丹如同炖排骨一般,需要先大火全局加热,紧接着中火炖出营养,最后转小火收汁.本文给出炼丹中的 “火候控制器”-- 学习率的几种调节方法,框架基于 pytorch 1. 自定义根据 epoch 改变学习率. 这种方法在开源代码中常见,此处引用 pytorch 官方实例中的代码 adjust_lr def adjust_learning_rate(optimizer, epoch): """Sets the learning rate to the initial LR de…
版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com AlexNet在2012年ImageNet图像分类任务竞赛中获得冠军.网络结构如下图所示: 对CIFAR10,图片是32*32,尺寸远小于227*227,因此对网络结构和参数需做微调: 最后一个max-pool层删除 网络定义代码如下: class AlexNet(nn.Module): def __init__(self): super(AlexNet, self).__init__() self…
版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com VGGNet在2014年ImageNet图像分类任务竞赛中有出色的表现.网络结构如下图所示: 同样的,对32*32的CIFAR10图片,网络结构做了微调:删除了最后一层最大池化,具体参见网络定义代码,这里采用VGG19,并加入了BN: ''' 创建VGG块 参数分别为输入通道数,输出通道数,卷积层个数,是否做最大池化 ''' def make_vgg_block(in_channel, out_ch…
%matplotlib inline 训练一个分类器 上一讲中已经看到如何去定义一个神经网络,计算损失值和更新网络的权重. 你现在可能在想下一步. 关于数据? 一般情况下处理图像.文本.音频和视频数据时,可以使用标准的Python包来加载数据到一个numpy数组中. 然后把这个数组转换成 torch.*Tensor. 图像可以使用 Pillow, OpenCV 音频可以使用 scipy, librosa 文本可以使用原始Python和Cython来加载,或者使用 NLTK或 SpaCy 处理 特…
Pytorch多GPU训练 临近放假, 服务器上的GPU好多空闲, 博主顺便研究了一下如何用多卡同时训练 原理 多卡训练的基本过程 首先把模型加载到一个主设备 把模型只读复制到多个设备 把大的batch数据也等分到不同的设备 最后将所有设备计算得到的梯度合并更新主设备上的模型参数 代码实现(以Minist为例) #!/usr/bin/python3 # coding: utf-8 import torch from torchvision import datasets, transforms…
项目地址:https://github.com/kerlomz/captcha_trainer 1. 前言 本项目适用于Python3.6,GPU>=NVIDIA GTX1050Ti,原master分支已经正式切换为CNN+LSTM+CTC的版本了,是时候写一篇新的文章了. 长话短说,开门见山,网络上现有的代码以教学研究为主,本项目是为实用主义者定制的,只要基本的环境安装常识,便可很好的训练出期望的模型,重定义几个简单的参数任何人都能使用机器学习技术训练一个商业化成品. 最新更新(2019/01…