POJ 1637 混合图的欧拉回路判定】的更多相关文章

题意:一张混合图,判断是否存在欧拉回路. 分析参考: 混合图(既有有向边又有无向边的图)中欧拉环.欧拉路径的判定需要借助网络流! (1)欧拉环的判定:一开始当然是判断原图的基图是否连通,若不连通则一定不存在欧拉环或欧拉路径(不考虑度数为0的点). 其实,难点在于图中的无向边,需要对所有的无向边定向(指定一个方向,使之变为有向边),使整个图变成一个有向欧拉图(或有向半欧拉图).若存在一个定向满足此条件,则原图是欧拉图(或半欧拉图)否则不是.关键就是如何定向? 首先给原图中的每条无向边随便指定一个方…
前面讲过了无向图,有向图求欧拉回路,欧拉通路的做法.可以直接根据度数来判断,当然前提是这是一个连通图. 这道题既有无向边,又有有向边,然后求欧拉回路. 采用的方法是最大流. 具体处理方法. 首先,我们对无向边,进行随意定边.定完边之后,求出每个点的出度入度.如果某个点的出度入度之差为奇数,那么就无法形成欧拉回路. 接下来所有的点的度数之差都是偶数了,对于有向边,我们不需要处理. 对于无向边,我们给初始随意定的边的方向,流量+1,即如果一条无向边,a - b,我们初始给他定边是a -> b,那么我…
混合图的欧拉回路判定 上一篇正好分别讲了有向图和无向图的欧拉回路判定方法 如果遇上了混合图要怎么做呢? 首先我们思考有向图的判定方法:所有点的出度=入度 我们可以先为无向边任意定一个向,算出此时所有顶点的入度和出度 对于一个入度<>出度的点,我们修改与它相连的一条无向边的方向,一种可能是入度-1出度+1,一种可能是入度+1出度-1 无论如何不会改变的是其入度与出度的差一直是偶数 所以首先我们对任意定向后的整张图根据其入度与出度之差进行初步判定 有顶点入度与出度之差为奇数的图一定无法构成欧拉回路…
先来复习一下混合图欧拉回路:给定一张含有单向边和双向边的图,使得每一点的入度出度相同. 首先对于有向边来说,它能贡献的入度出度是确定的,我们不予考虑.对于无向图,它可以通过改变方向来改变两端点的出入度.好的,我们不妨先将这些无向边随意定向,因为欧拉回路要求每点入度 = 出度,也就是总度数为偶数,存在奇数度点必不能有欧拉回路,所以我们先扫一遍总度数看看是否为偶数,如果是奇数我们弃疗就好. 接下来我们要尝试着修复这些无向边的方向使得度数平衡.首先细化问题到每一个点:对于点u,如果它的入度大于出度,那…
题目大意 求混合图是否存在欧拉回路 做法 有向边我们只有增加入度出度 对于无向边,我们给它设定一个初始方向 如果不能满足|入度-出度|为偶数,无解 然后在网络流图中, 设设定方向的反向连一条边,表示反悔流量 对于最后in>out的点,最多可以提供反悔(in-out)/2点反悔流量,从源点连向它 对于out>in的点,至少接受(out-in)/2点反悔流量,连向汇点 跑一次网络流判断是否满流 由于图中一条边提供一个入度,一个出度 所以图中总入度是等于总出度的 网络流中两边流量是一样的 注意 sb…
//网络流判定混合图欧拉回路 //通过网络流使得各点的出入度相同则possible,否则impossible //残留网络的权值为可改变方向的次数,即n个双向边则有n次 //Time:157Ms Memory:348K #include <iostream> #include<cstring> #include<cstdio> #include<algorithm> #include<queue> using namespace std; #de…
传送门 这篇题解讲的真吼->这里 首先我们可以二分一个答案,然后把所有权值小于这个答案的都加入图中 那么问题就转化为一张混合图(既有有向边又有无向边)中是否存在欧拉回路 首先 无向图存在欧拉回路,当且仅当图的所有顶点度数都为偶数且图连通.        有向图存在欧拉回路,当且仅当图的所有顶点入度等于出度且图连通. 那么我们怎么判断混合图的欧拉回路是否存在呢? 我们把无向边的边随便定向,然后计算每一个点的入度和出度.如果有某一个点的入度和出度之差是奇数,那么肯定不存在欧拉回路. 因为欧拉回路要求…
这道题写了两个多小时-- 首先讲一下怎么建模 我们的目的是让所有点的出度等于入度 那么我们可以把点分为两部分, 一部分出度大于入度, 一部分入度大于出度 那么显然, 按照书里的思路,将边方向后,就相当于从出度大于入度的运一个流量到 入度大于出度的点. 紫书 例题 11-13 UVa 10735(混合图的欧拉回路)(最大流) 所以我们可以把源点S到所有出度大于入度的点连一条弧, 弧的容量是出度-入度的一半 为什么容量是这样呢,等一下说 同理, 把所有入度大于出度的点和汇点T连一条弧, 弧的容量是入…
Sightseeing tour Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 6986   Accepted: 2901 Description The city executive board in Lund wants to construct a sightseeing tour by bus in Lund, so that tourists can see every corner of the beauti…
Sightseeing tour Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 10581   Accepted: 4466 题目链接:http://poj.org/problem?id=1637 Description: The city executive board in Lund wants to construct a sightseeing tour by bus in Lund, so that touri…