首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
JAVA求解线性方程组-列主元高斯消去法
】的更多相关文章
JAVA求解线性方程组-列主元高斯消去法
package MyMath; import java.util.Scanner; public class Gauss { /** * @列主元高斯消去法 */ static double x[]; static double a[][]; static double b[]; static double m; static int n; //选主元 public static void SelectAndChangeLine(int k){ int maxline=k; for(int i=…
[Matlab]求解线性方程组
转自:http://silencethinking.blog.163.com/blog/static/911490562008928105813169/ AX=B或XA=B在MATLAB中,求解线性方程组时,主要采用前面章节介绍的除法运算符"/"和"\".如: X=A\B表示求矩阵方程AX=B的解: X=B/A表示矩阵方程XA=B的解. 对方程组X=A\B,要求A和B用相同的行数,X和B有相同的列数,它的行数等于矩阵A的列数,方程X=B/A同理. 如果矩阵A不是方阵…
matlab 求解线性方程组之LU分解
线性代数中的一个核心思想就是矩阵分解,既将一个复杂的矩阵分解为更简单的矩阵的乘积.常见的有如下分解: LU分解:A=LU,A是m×n矩阵,L是m×m下三角矩阵,U是m×n阶梯形矩阵 QR分解: 秩分解:A=CD , A是m×n矩阵,C是m×4矩阵,D是4×n矩阵. 奇异值分解:A=UDVT 谱分解: 在求解线性方程组中,一个核心的问题就是矩阵的LU分解,我们将一个矩阵A分解为两个更加简单的矩阵的复合LU,其中L是下三角矩阵,U是阶梯形矩阵.下三角矩阵和上三角矩阵具有非常良好的性质:Lx=y…
【原创】开源Math.NET基础数学类库使用(06)直接求解线性方程组
本博客所有文章分类的总目录:[总目录]本博客博文总目录-实时更新 开源Math.NET基础数学类库使用总目录:[目录]开源Math.NET基础数学类库使用总目录 前言 在前几篇关于Math.NET的博客中(见上面链接),主要是介绍了Math.NET中主要的数值功能,并进行了简单的矩阵向量计算例子,接着使用Math.NET的矩阵等对象,对3种常用的矩阵数据交换格式的读写.一方面可以了解Math.NET的使用,另一方面以后也可以直接读取和保存数据为这两种格式,给大家的…
python 求解线性方程组
Python线性方程组求解 求解线性方程组比较简单,只需要用到一个函数(scipy.linalg.solve)就可以了.比如我们要求以下方程的解,这是一个非齐次线性方程组: 3x_1 + x_2 - 2x_3 = 5 x_1 - x_2 + 4x_3 = -2 2x_1 + 3x_3 = 2.5 import numpy as np from scipy.linalg import solve a = np.array([[3, 1, -2], [1, -1, 4], [2, 0, 3]]) b…
Numpy库进阶教程(一)求解线性方程组
前言 Numpy是一个很强大的python科学计算库.为了机器学习的须要.想深入研究一下Numpy库的使用方法.用这个系列的博客.记录下我的学习过程. 系列: Numpy库进阶教程(二) 正在持续更新 计算逆矩阵 numpy.linalg模块包括线性代数的函数.能够用来求矩阵的逆,求解线性方程组.求特征值及求解行列式. mat函数能够用来构造一个矩阵,传进去一个专用字符串,矩阵的行与行之间用分号隔开,行内的元素用空格隔开. import numpy as np A = np.mat("0 1 2…
matlab中求解线性方程组的rref函数
摘自:http://www.maybe520.net/blog/987/ matlab中怎么求解线性方程组呢? matlab中求解线性方程组可应用克拉默法则(Cramer's Rule)即通过det()函数计算各个矩阵的行列式来求,也可以用高斯消元法来求解. matlab中的rref()函数可以将矩阵化成行最简形式,用法如下: 假如有一线性方程组为: 16 x1 + 2 x2 + 3 x3 = 13 5 x1 + 11 x2 + 10 x3 = 8 9 x1 + 7 x2 + 6 x3 = 12…
Numpy计算逆矩阵求解线性方程组
对于这样的线性方程组: x + y + z = 6 2y + 5z = -4 2x + 5y - z = 27 可以表示成矩阵的形式: 用公式可以表示为:Ax=b,其中A是矩阵,x和b都是列向量 逆矩阵(inverse matrix)的定义:设A是数域上的一个n阶矩阵,若存在另一个n阶矩阵B,使得: AB=BA=E ,则我们称B是A的逆矩阵,而A则被称为可逆矩阵.注:E为单位矩阵. 使用逆矩阵求解线性方程组的方法:两边都乘以−1,变成−1Ax=−1b,因为任何矩阵乘以单位矩阵都是自身,所以x=−…
Numpy求解线性方程组
Numpy求解线性方程组 对于Ax=b,已知A和b,怎么算出x? 1. 引入包 2. 求解 验证…
Lapack求解线性方程组
可参见这两个页面: 1. http://www.culatools.com/dense/lapack/ 2. http://www.netlib.org/lapack/lug/node1.html 根据实际需要,找到相应的程序,再去lapack中搜索该程序的源码来调用即可. 以求解超定线性方程组为例,它采用最小二乘法(Least Squares Routines)求解,使 最小,相应的程序有: Table 2.3: Driver routines for linear least squares…