Selective Search for Object Recoginition surgewong@gmail.com http://blog.csdn.net/surgewong       在前一段时间在看论文相关的工作,没有时间整理对这篇论文的理解.在前面的一篇博客[1]中有提到Selective Search[2],其前期工作利用图像分割的方法得到一些原始区域(具体内容请查看[1]),然后使用一些合并策略将这些区域合并,得到一个层次化的区域结构,而这些结构就包含着可能需要的物体.  …
Selective Search for Object Recognition 是J.R.R. Uijlings发表在2012 IJCV上的一篇文章.主要介绍了选择性搜索(Selective Search)的方法.选择性搜索综合了蛮力搜索(exhaustive search)和分割(segmentation)的方法.选择性搜索意在找出可能的目标位置来进行物体的识别.与传统的单一策略相比,选择性搜索提供了多种策略,并且与蛮力搜索相比,大幅度降低搜索空间,让我们可以用到更好的识别算法. 现实中,很多…
Selective Search for Object Recognition 作者: J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, A. W. M. Smeulders. 引用: Uijlings, Jasper RR, et al. "Selective search for object recognition." International journal of computer vision, 104(2) (201…
这篇笔记,仅仅是对选择性算法介绍一下原理性知识,不对公式进行推倒. 前言: 这篇论文介绍的是,如果快速的找到的可能是物体目标的区域,不像使用传统的滑动窗口来暴力进行区域识别.这里是使用算法从多个维度对找到图片中,可能的区域目标,减少目标碎片,提升物体检测效率. 下面是这篇文章的笔记: 介绍及引言: 图片是分层次的,比如下图中a: 沙拉和匙在沙拉碗里,而碗又在桌子上,另外桌子和木头有关或者说桌子和桌子上的所有东西有关.所以图片中的目标是有层次的. 图片分割应该按层次来,也不存在使用单个策略这样通用…
与 Selective Search 初次见面是在著名的物体检测论文 「Rich feature hierarchies for accurate object detection and semantic segmentation」,因此,这篇论文算是阅读 R-CNN 的准备. 这篇论文的标题虽然也提到了 Object Recognition ,但就创新点而言,其实在 Selective Search .所以,这里只简单介绍 Selective Search 的思想和算法过程,对于 Objec…
Selective Search for Object Recognition 简介 Selective Search是现在目标检测里面非常常用的方法,rcnn.frcnn等就是通过selective search方法得到候选框,然后进行分类,也就是传统的two stage方法.本篇也是我看到frcnn之后不得不看的一篇论文,大致将自己的理解记录下来,方便以后指正. Selective Search 算法目的 能够得到各种大小的框 由于图像中的物体可以有任意大小,所以selective sear…
Selective Search for Object Recognition 作者: J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, A. W. M. Smeulders. 引用: Uijlings, Jasper RR, et al. "Selective search for object recognition." International journal of computer vision, 104(2) (201…
http://blog.csdn.net/charwing/article/details/27180421 Selective Search for Object Recognition 是J.R.R. Uijlings发表在2012 IJCV上的一篇文章.主要介绍了选择性搜索(Selective Search)的方法.选择性搜索综合了蛮力搜索(exhaustive search)和分割(segmentation)的方法.选择性搜索意在找出可能的目标位置来进行物体的识别.与传统的单一策略相比,…
UijlingsIJCV2013, Selective Search For Object Recognition code 算法思想 利用分割算法将图片细分成很多region, 或超像素. 在这个基础上, 将邻近的相似region融合起来. 聚合过程中得到的region作为proposal. ... 作者的代码通过mexFelzenSegmentIndex.cpp对Felzenszwalb---Efficient Graph-based Image Segmentation的代码做了以下封装:…
今天介绍 IJCV 2013 年的一篇文章,Selective Search for Object Recognition,这个是后面著名的DL架构 R-CNN 的基础,后续介绍 R-CNN 的时候,会发现 R-CNN 和这篇文章里介绍的算法非常类似. 做模式识别的人都知道,目标识别与目标检测是两个不同的东西,目标检测比目标识别要难得多,目标识别可以看做是一个分类问题,给定一张测试图,我们只要判断这张图里有没有某一特定的物体,而目标检测,需要在这张图上标出物体的具体位置,这可以看做是一个回归问题…