09.变态跳台阶 Java】的更多相关文章

题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 思路 0:0 1:(1) 2:(1,1)(2) 3:(1,1,1)(2,1)(1,2)(3) 4:(1,1,1,1)(2,1,1)(1,2,1)(3,1)(1,1,2)(1,3)(2,2)(4) 显然,除了0,其他都是2^(n-1); OJ并未检查小于等于0的情况,所以也可将该界外判断去掉. n级台阶,第一步有n种跳法:1,2,3,...,n 跳1级,剩下的有F(n-1)种.…
一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. java版本: public class Solution { public static void main(String[] args){ long startTime=System.currentTimeMillis(); System.out.println("第4项的结果是:"+JumpFloorII(4)); long endTime=System.current…
题目:一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 思路: n<=0时,有0种跳法 n=1时,只有一种跳法 n=2时,有两种跳法 已知当n>2时,当最后一次跳1级台阶,则之前有f(n-1)种跳法,当最后一次跳2级台阶时,之前有f(n-2)种跳法,即f(n)=f(n-1)+f(n-2); 故此处采用递归的方法 递归(英语:recursion)在计算机科学中是指一种通过重复将问题分解为同类的子问题而解决问题的方法. publ…
跳台阶 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法. class Solution { public: int jumpFloor(int number) { ) ; ) ; ; ; ; ; i <= number; i++) { rtn = n1 + n2; n1 = n2; n2 = rtn; } return rtn; } }; 变态跳台阶 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种…
变态跳台阶 题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级--它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 实现代码 function jumpFloor(number) { if (number<0){ return -1; }else if(number <=2){ return number } var arr = []; arr[0] = 1; arr[1] = 1; for(var i = 2; i <= number; i++) { arr[i] =…
剑指Offer - 九度1389 - 变态跳台阶2013-11-24 04:20 题目描述: 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 输入: 输入可能包含多个测试样例,对于每个测试案例, 输入包括一个整数n(1<=n<=50). 输出: 对应每个测试案例, 输出该青蛙跳上一个n级的台阶总共有多少种跳法. 样例输入: 6 样例输出: 32 题意分析: 跳台阶问题,对于n级台阶,每次都可以跳任意级,问总共有多少种跳法.如果考虑…
题目 一仅仅青蛙一次能够跳上1级台阶,也能够跳上2级--它也能够跳上n级. 求该青蛙跳上一个n级的台阶总共同拥有多少种跳法. 思路 用Fib(n)表示青蛙跳上n阶台阶的跳法数,设定Fib(0) = 1: 当n = 1 时. 仅仅有一种跳法,即1阶跳,即Fib(1) = 1; 当n = 2 时. 有两种跳的方式,一阶跳和二阶跳,即Fib(2) = Fib(1) + Fib(0) = 2; 当n = 3 时.有三种跳的方式,第一次跳出一阶台阶后,后面还有Fib(3-1)中跳法,第一次跳出二阶台阶后.…
题目:斐波那契数列 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0). f(n) = f(n-1) + f(n-2) 基本思路 这道题在剑指offer中实际是当作递归的反例来说的. 递归的本质是吧一个问题分解成两个或者多个小问题,如果多个小问题存在互相重叠的情况,那么就存在重复计算. f(n) = f(n-1) + f(n-2) 这种拆分使用递归是典型的存在重叠的情况,所以会造成非常多的重复计算. 另外,每一次函数调用爱内存中都需要分配空间,每…
变态跳台阶 时间限制:1秒空间限制:32768K 题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法.   分析一下明天是个斐波那契数列,我们一步一步退出其通项公式.   设台阶数为n, 总跳法为jumps   n          jumps 1 1 2 2 3 4 4 8 5 16   现在猜测其通项公式为 fbonicc(n) = 2 * fbonicc(n - 1)   列出4的全部跳法 5的全部跳法 1111 1111…
跳台阶是斐波那契数列的一个典型应用,其思路如下: # -*- coding:utf-8 -*- class Solution: def __init__(self): self.value=[0]*50 def jumpFloor(self, number): # write code here self.value[0]=1 self.value[1]=2 for i in range(2,number): self.value[i]=self.value[i-1]+self.value[i-…
php实现变态跳台阶(记忆化递归) 一.总结 1.本题思路(分类讨论思路,注意初始值和边界值):第一步如果1,那剩下的就是jumpFloorII($number-1)(下面jumpFloorII以j表示),第一步如果2,那剩下的就是j($number-2),...,以此类推 所以j(n)=j(n-1)+j(n-2)+...+j(0),其实j(n)就是2的n次方 二.php实现变态跳台阶 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法.…
首先说一个剪枝的概念: 剪枝出现在递归和类递归程序里,因为递归操作用图来表示就是一棵树,树有很多分叉,如果不作处理,就有很多重复分叉,会降低效率,如果能把这些分叉先行记录下来,就可以大大提升效率——这就是剪枝技巧.他的做法和动规很像(将状态保存起来,用空间换时间),就是在递归的过程中把出现的状态存储下来 具体见代码: source code(跳台阶): package niuke; public class 跳台阶 { public static int Solution1(int i,int…
题目描述: 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 输入: 输入可能包含多个测试样例,对于每个测试案例, 输入包括一个整数n(1<=n<=50). 输出: 对应每个测试案例, 输出该青蛙跳上一个n级的台阶总共有多少种跳法. 样例输入: 样例输出: 解题思路: 这道题目跟之前的跳台阶大同小异,只是跳台阶的阶数从1变到了n,也就是说,不再是跳一下或者跳两下的问题,而是跳n下的问题.那么解题的思路显然还得逆向分析,我们发现: 每…
题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法.   思路 首先想到的解决方案是根据普通跳台阶题目改编,因为可以跳任意级,所以要加上前面台阶的所有可能,最后再加上可以一步跳上最后一阶的可能. public class Solution { public int JumpFloorII(int target) { if (target == 1) return 1; if (target == 2) return 2; //…
题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 一 . 解题思路. 该题目为跳台阶题目的延伸,普通跳台阶每次跳的阶数(1或2),而该题目每次跳的阶数进化为(1~N),其实万变不离其宗,看下图: 其实想法和普通跳台阶完全一致,跳1级,剩下n-1级,则剩下跳法是f(n-1),跳2级,剩下n-2级,则剩下跳法是f(n-2),所以f(n)=f(n-1)+f(n-2)+...+f(1),因为f(n-1)=f(n-2)+f(n-3)+…
题目: 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 分析: 假设我们要求跳上第3级的跳法,可以从第0级跳3级台阶到达,也可以从第1级跳2级台阶到达,还可以从第2级跳1级到达. 所以跳上第3级的跳法数等于到达第0级的跳数加上到达第1级的跳数再加上到达第2级的跳数,也就是f(3) = f(2) + f(1) + f(0) 可以推导出f(n) = f(n-1) + f(n-2) + ... + f(2) + f(1) + f(0) 我…
题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. /* f(n-1) = f(n-2) + f(n-3) + ... + f(0) f(n) = f(n-1) + f(n-2) + ... + f(0) f(n) - f(n-1) = f(n-1) f(n) = 2*f(n-1) */ public class Solution { public int JumpFloorII(int target) { return (i…
  题目描述:   一只青蛙一次可以跳上1级台阶,也可以跳上2级--它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法.   解题思路:   当只有一级台阶时,f(1)=1:当有两级台阶时,f(2)=f(2-1)+f(2-2):一般情况下,当有n级台阶时,f(n)=f(n-1)+f(n-2)+···+f(n-n)=f(0)+f(1)+···+f(n-1),同理,f(n-1)=f(0)+f(1)+···+f(n-2).   因此,根据上述规律可以得到:f(n)=2*f(n-1).这时一个…
题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 思路 暴力枚举(自顶向下递归): 若台阶数小于等于0,返回0: 若台阶数为1,返回1:(1) 若台阶数为2,返回2:(1,1),(2) 否则,返回F(n-1)+F(n-2);(因为下一步只能是跳1级或者跳2级) 备忘录算法(自顶向下递归): 上面的方法包含大量重复计算,这里利用Map来记录计算过的结果,以减少计算次数. 迭代法(自底向上迭代,也许也算动态规划吧): 拿…
题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法.   其实就是斐波那契数列问题. 假设f(n)是n个台阶跳的次数. f(1) = 1 f(2) 会有两个跳得方式,一次1阶或者2阶,这回归到了问题f(1),f(2) = f(2-1) + f(2-2) f(3) 会有三种跳得方式,1阶.2阶.3阶,那么就是第一次跳出1阶后面剩下:f(3-1);第一次跳出2阶,剩下f(3-2):第一次3阶,那么剩下f(3-3).因此结论是f(3)…
题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 问题分析 由于每次跳的阶数不确定,没有一个固定的规律,但是可以了解的是后一次跳是在前一次跳的结果上累加的,因此我们可以考虑使用递归的方法来解决问题. 那么从递归的三个步骤开始寻找解决方案: 1. 递归截止条件. 由于每次可以跳1-n的任意阶数,因此无论有多少阶,都可以一次跳完,为了表示方便,我们将一次性跳完的情况设为F(0),当n=1时,只能有一种情况,F(1) = 1.当n…
题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法.   这道题还是编程题?   数学渣渣看到心拔凉拔凉的,   要用到数学归纳法来解决,   解题思路如下:   前提是n个台阶会有一次n阶的跳法.分析如下: f(1) = 1 f(2) = f(2-1) + f(2-2)         //f(2-2) 表示2阶一次跳2阶的次数. f(3) = f(3-1) + f(3-2) + f(3-3) ... f(n) = f(n-1…
题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 题目分析 根据上一个题目可以知道,青蛙只跳1或2可以得出是一个斐波那契问题,即a[n]=a[n-1]+a[n-2],那么能跳1,2,3个台阶时a[n]=a[n-1]+a[n-2]+a[n-3],...... 那么有: a[n]=a[n-1]+a[n-2]+......+a[1];..........................① a[n-1]=        a[n-2]…
题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 题目地址 https://www.nowcoder.com/practice/22243d016f6b47f2a6928b4313c85387?tpId=13&tqId=11162&rp=1&ru=/ta/coding-interviews&qru=/ta/coding-interviews/question-ranking 思路 当n=1时,结果为1:…
题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. # -*- coding:utf-8 -*- class Solution: def jumpFloorII(self, number): # write code here #其实就是斐波那契数列问题. #假设f(n)是n个台阶跳的次数. #f(1) = 1 #f(2) 会有两个跳得方式,一次1阶或者2阶,这回归到了问题f(1),f(2) = f(2-1) + f(2-2)…
一.题目 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 二.思路 1.关于本题,前提是n个台阶会有一次n阶的跳法.分析如下: f(1) = 1 f(2) = f(2-1) + f(2-2)         //f(2-2) 表示2阶一次跳2阶的次数. f(3) = f(3-1) + f(3-2) + f(3-3) ... f(n) = f(n-1) + f(n-2) + f(n-3) + ... + f(n-(n-1)) + f(…
C++ class Solution { public: int jumpFloorII(int n) { <<--n; } }; 推导: 关于本题,前提是n个台阶会有一次n阶的跳法.分析如下: f(1) = 1 f(2) = f(2-1) + f(2-2)         //f(2-2) 表示2阶一次跳2阶的次数. f(3) = f(3-1) + f(3-2) + f(3-3) ... f(n) = f(n-1) + f(n-2) + f(n-3) + ... + f(n-(n-1)) +…
一.题目: 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 二.思路: f(n)=f(n-1)+f(n-2)+...+f(0),f(1)=1,f(0)=1,=>f(n)=2*f(n-1) 三.代码:    …
原创博文,转载请注明出处! # 本文是牛客网<剑指offer>刷题笔记,笔记索引连接 1.题目 # 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 2.思路 # n=0,f(0)=0 # n=1,f(1)=1 # n=2,f(2)=2,{1,1;2} # n=3,f(3)=4,{1,1,1;1,2;2,1;3;} # n=4,f(4)=8,{1,1,1,1;1,1,2;1,2,1;2,1,1;2,2;1,3;3,1;4} 数学归纳…
 题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. [思路1]每个台阶都有跳与不跳两种可能性(最后一个台阶除外),最后一个台阶必须跳.所以共用2^(n-1)中情况. class Solution { public: int jumpFloorII(int number) { <<--number; //1左移number-1位,即2的number-1次幂 //return pow(2, number - 1); } };…