ATI显卡 ATI显卡即AMD显卡.俗称A卡.搭载AMD公司出品的显示芯片.与NVIDIA齐名,同为世界两大显示芯片厂商. 不同的是AMD不是只有显卡,而且还出品CPU(处理器),其AMD处理器与Intel齐名,同为世界两大处理器芯片厂商. AMD可以提供高性能CPU.高性能独立显卡GPU.主板芯片组三大组件的半导体公司,为了明确其优势,AMD提出3A平台的新标志,在笔记本领域有"AMD VISION"标志的就表示该电脑采用3A构建方案 NVIDIA NVIDIA(全称为NVIDIA…
由于 Python 2 即将退役,使用 Python 3 的开发者大约为 90%,Python 2 的使用量正在迅速减少.而去年仍有 1/4 的人使用 Python 2. Web 开发和数据科学家仍是 Python 开发的两大主力.因为据称 Python 是数据科学的最佳工具之一,所以涉及数据分析和机器学习的 Python 开发人员数量如此众多毫不令人吃惊.另外,我们看到将 Python 用作开发爬虫的比例也比较高,达到 37%. https://www.oschina.net/news/107…
GPU的硬件结构,也不是具体的硬件结构,就是与CUDA相关的几个概念:thread,block,grid,warp,sp,sm. sp: 最基本的处理单元,streaming processor  最后具体的指令和任务都是在sp上处理的.GPU进行并行计算,也就是很多个sp同时做处理 sm:多个sp加上其他的一些资源组成一个sm,  streaming multiprocessor. 其他资源也就是存储资源,共享内存,寄储器等. warp:GPU执行程序时的调度单位,目前cuda的warp的大小…
掌握部分硬件知识,有助于程序员编写更好的CUDA程序,提升CUDA程序性能,本文目的是理清sp,sm,thread,block,grid,warp之间的关系.由于作者能力有限,难免有疏漏,恳请读者批评指正.  首先我们要明确:SP(streaming Process),SM(streaming multiprocessor)是硬件(GPU hardware)概念.而thread,block,grid,warp是软件上的(CUDA)概念. 从硬件看 SP:最基本的处理单元,streaming pr…
CUDA SHARED MEMORY shared memory在之前的博文有些介绍,这部分会专门讲解其内容.在global Memory部分,数据对齐和连续是很重要的话题,当使用L1的时候,对齐问题可以忽略,但是非连续的获取内存依然会降低性能.依赖于算法本质,某些情况下,非连续访问是不可避免的.使用shared memory是另一种提高性能的方式. GPU上的memory有两种: · On-board memory · On-chip memory global memory就是一块很大的on…
GPGPU OpenCL/CUDA 高性能编程的10大注意事项 1.展开循环 如果提前知道了循环的次数,可以进行循环展开,这样省去了循环条件的比较次数.但是同时也不能使得kernel代码太大. 循环展开代码例子: #include<iostream> using namespace std; int main(){ ; ;i<=;i++){ sum+=i; } sum=; ;i<=;i=i+){ sum+=i; sum+=i+; sum+=i+; sum+=i+; sum+=i+;…
举报 说到显卡,就不免令人想到英伟达和AMD两家面向个人消费级和企业级最大的显示芯片生产企业,英伟达和AMD,今天小编为大家简单的介绍一下英伟达的显卡选购方面的攻略,为一些想要购买显卡的用户提供一些参考. 从熟悉到精通 英伟达显卡N卡选购指南 英伟达公司的产品主要为五大类,包括:GeForce(精视显卡).Tegra(图睿移动处理器).ION(离子平台主板芯片).Quadro(专业图形卡).Tesla(服务器显示核心)等不同领域的产品分类.今天我们要讲的是英伟达的面向个人消费级的精视GeForc…
多谢大家关注 转载本文请注明:http://blog.csdn.net/leonwei/article/details/8880012 本文将作为我<从零开始做OpenCL开发>系列文章的第一篇. 1 异构计算.GPGPU与OpenCL OpenCL是当前一个通用的由很多公司和组织共同发起的多CPU\GPU\其他芯片 异构计算(heterogeneous)的标准,它是跨平台的.旨在充分利用GPU强大的并行计算能力以及与CPU的协同工作,更高效的利用硬件高效的完成大规模的(尤其是并行度高的)计算…
在西雅图超级计算大会(SC11)上发布了新的基于指令的加速器并行编程标准,既OpenACC.这个开发标准的目的是让更多的编程人员可以用到GPU计算,同时计算结果可以跨加速器使用,甚至能用在多核CPU上.出于显而易见的原因,NVIDIA在大力推广和支持OpenACC.但事实上PGI和Cray才是最早推动这项技术商业化的公司.PGI已经推出了一组非常类似的加速器指令,目前也成为了OpenACC标准的基础部分之一.Cray公司正在开发自己的OpenACC编译器,并且他的XK6客户如橡树岭国家实验室和瑞…
随着GPU的可编程性不断增强,GPU的应用能力已经远远超出了图形渲染任务,利用GPU完成通用计算的研究逐渐活跃起来,将GPU用于图形渲染以外领域的计算成为GPGPU(General Purpose computing on graphics processing units,基于GPU的通用计算).而与此同时CPU则遇到了一些障碍,CPU为了追求通用性,将其中大部分晶体管主要用于构建控制电路(比如分支预测等)和Cache,只有少部分的晶体管来完成实际的运算工作. CPU + GPU 是一个强大的…