Manifold learning 流形学习】的更多相关文章

Machine Learning 虽然名字里带了 Learning 一个词,让人乍一看觉得和 Intelligence 相比不过是换了个说法而已,然而事实上这里的 Learning 的意义要朴素得多.我们来看一看 Machine Learning 的典型的流程就知道了,其实有时候觉得和应用数学或者更通俗的数学建模有些类似,通常我们会有需要分析或者处理的数据,根据一些经验和一些假设,我们可以构建一个模型,这个模型会有一些参数(即使是非参数化方法,也是可以类似地看待的),根据数据来求解模型参数的过程…
流形学习(manifold learning)的一些综述 讨论与进展 issue 26 https://github.com/memect/hao/issues/26 Introduction http://blog.sina.com.cn/s/blog_eccca60e0101h1d6.html @cmdyz 流形学习 (Manifold Learning) http://blog.pluskid.org/?p=533 浅谈流形学习 http://blog.csdn.net/chl033/ar…
原文地址:https://blog.csdn.net/dllian/article/details/7472916 假设数据是均匀采样于一个高维欧氏空间中的低维流形,流形学习就是从高维采样数据中恢复低维流形结构,即找到高维空间中的低维流形,并求出相应的嵌入映射,以实现维数约简或者数据可视化.它是从观测到的现象中去寻找事物的本质,找到产生数据的内在规律.流形学习方法是模式识别中的基本方法,分为线性流形学习算法和非线性流形学习算法,线性方法就是传统的方法如主成分分析(PCA)和线性判别分析(LDA)…
流形学习 (manifold learning) zz from prfans............................... dodo:流形学习 (manifold learning) dodo 流形学习是个很广泛的概念.这里我主要谈的是自从2000年以后形成的流形学习概念和其主要代表方法.自从2000年以后,流形学习被认为属于非线性降维的一个分支.众所周知,引导这一领域迅速发展的是2000年Science杂志上的两篇文章: Isomap and LLE (Locally Lin…
1.什么是流形 流形学习的观点:认为我们所能观察到的数据实际上是由一个低维流行映射到高维空间的.由于数据内部特征的限制,一些高维中的数据会产生维度上的冗余,实际上这些数据只要比较低的维度就能唯一的表示.所以直观上来讲,一个流形好比是一个$d$维的空间,在一个$m$维的空间中$(m > d)$被扭曲之后的结果.需要注意的是流形并不是一个形状,而是一个空间.举个例子来说,比如说一块布,可以把它看成一个二维的平面,这是一个二维的空间,现在我们把它扭一扭(三维空间),它就变成了一个流形,当然不扭的时候,…
我恨自己不干活儿,不过也没辙. 早晚要学习流形的,今天先转一篇文章,以后找不到就尿了. 我真羡慕数学系的人,╮(╯▽╰)╭. 发信人: Kordan (K&M), 信区: AI标  题: dodo:流形学习 (manifold learning)(zz)发信站: 水木社区 (Sun Sep 30 16:02:07 2007), 站内 zz from prfans............................... dodo:流形学习 (manifold learning) dodo 流…
很多原理性的东西需要有基础性的理解,还是篇幅过少,所以讲解的不是特别的清晰. 原文链接:http://blog.sciencenet.cn/blog-722391-583413.html 流形(manifold)的概念最早是在1854年由 Riemann 提出的(德文Mannigfaltigkeit),现代使用的流形定义则是由 Hermann Weyl 在1913年给出的. 流形(Manifold),一般可以认为是局部具有欧氏空间性质的拓扑空间.而实际上欧氏空间就是流形最简单的实例.像地球表面这…
PCA对非线性的数据集处理效果不太好. 另一种方法 流形学习 manifold learning 是一种无监督评估器,试图将一个低维度流形嵌入到一个高纬度 空间来描述数据集 . 类似 一张纸 (二维) 卷起 弄皱 (三维).二维流形 嵌入到一个三维空间, 就不再是线性的了. 流形方法技巧: 多维标度法 multidimensional scaling MSD 局部线性嵌入法 locally linear embedding LLE 保距映射法 isometric mapping Isomap 流…
转:http://hi.baidu.com/chb_seaok/item/faa54786a3ddd1d7d1f8cd0b 在常见的降维方法中,PCA和LDA是最为常用的两种降维方法.PCA是一种无监督方法,它关注的是将数据沿着方差最大化的方向映射.而LDA是一种监督方法,它寻找映射轴(类之间耦合度低,类内的聚合度高),两种方法估计的都是全局的统计信息(均值和协方差). manifold learning是最近比较热门的领域,它是一种非线性降维技术,主要研究的是高维数据的潜在的流行结构.首先我们…
MDS, multidimensional scaling, 线性降维方法, 目的就是使得降维之后的点两两之间的距离尽量不变(也就是和在原是空间中对应的两个点之间的距离要差不多).只是 MDS 是针对欧氏空间设计的,对于距离的计算也是使用欧氏距离来完成的.如果数据分布在一个流形上的话,欧氏距离就不适用了. 1. 所谓 Machine Learning 里的 Learning ,就是在建立一个模型之后,通过给定数据来求解模型参数. 2. Riemannian geometry; from here…