不连续的处理很麻烦 导致序列DP又找不到优秀的子问题 自底向上考虑? 建立小根堆笛卡尔树 每个点的意义是:高度是(自己-father)的横着的极大矩形 子问题具有递归的优秀性质 f[i][j]i为根子树,放j个 儿子背包合并 考虑本层的矩形放多少个 枚举一共放t个,本层放j个 对于子树里的放置的t-j个,不论怎么放,一定占据了t-j列,剩下W[i]-(t-j)个位置 转移是: https://blog.csdn.net/qq_39972971/article/details/79359547 当…
[BZOJ2616]SPOJ PERIODNI Description Input 第1行包括两个正整数N,K,表示了棋盘的列数和放的车数. 第2行包含N个正整数,表示了棋盘每列的高度. Output 包括一个非负整数,表示有多少种放置的方案,输出答案mod 1000000007后的结果即可. Sample Input 5 2 2 3 1 2 4 Sample Output 43 HINT 对于100%的数据,有 N≤500,K≤500,h[i] ≤1000000. 题解:一看题就感觉应该是单调…
BZOJ SPOJ 直观的想法是构建笛卡尔树(每次取最小值位置划分到两边),在树上DP,这样两个儿子的子树是互不影响的. 令\(f[i][j]\)表示第\(i\)个节点,放了\(j\)个车的方案数. 设\(v\)是\(i\)的一个儿子,对于子树部分的转移,有\[f'[i][j]=\sum_{k\leq j}f[v][j-k]f[i][k]\] 求完子树贡献后,对于\(i\)节点代表的矩形,设高度是\(h\)宽度是\(w\),有\[f'[i][j]=\sum_{k\leq j}f[i][j-k]\…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2616 把相同高度的连续一段合成一个位置(可能不需要?),用前缀和维护宽度. 然后每次找区间里最低的那个点(ST表)作为根,递归左右孩子,构建笛卡尔树. dp[ cr ][ j ] 表示在 cr 的子树里选择 j 个点的方案数. 自己本来写的是同时枚举 cr 这个点.ls .rs 各贡献了多少个车,结果TLE. 看看题解,发现这样比较好(至多 \( n^3 \) ),就是先 \( dp[ c…
题意 N,K≤500,h[i]≤106N,K\le 500,h[i]\le10^6N,K≤500,h[i]≤106 题解 建立出小根堆性质的笛卡尔树,于是每个节点可以代表一个矩形,其宽度为子树大小,高度为该节点记录的那一列高度-父节点那一列高度. 然后就可以随便DP了. 如果不会笛卡尔树,看看这张图,再看看代码就懂了(简单的笛卡尔树). 代码 #include <bits/stdc++.h> using namespace std; typedef long long LL; const in…
洛谷题面传送门 一道笛卡尔树的 hot tea. 首先我们考虑一个非常 naive 的区间 DP:\(dp_{l,r}\) 表示区间 \([l,r]\) 的答案,那么我们考虑求出 \([l,r]\) 中最大值的位置所在的位置 \(p\),那么如果我们选取的 meeting 的位置 \(\le p\),那么显然 \([p+1,r]\) 部分的贡献都是 \(a_p\),\([l,p]\) 部分的总共先最小是 \(dp_{l,p}\),最优代价为 \(dp_{l,p}+a_p·(r-p)\),否则 \…
传送:https://vjudge.net/problem/TopCoder-14084 只是利用了笛卡尔树的性质,设f[i][j]为区间[i,j]的贡献,然后枚举中间最大的点k来转移,首先是两侧小区间贡献的,f[i][k-1]*fac[j-k]+f[k+1][j]*fac[k-i],大概是方案数相乘的形式 然后考虑中间点的儿子的贡献,是\( fac[k-i-1]|*fac[j-k-1]|*sum_{l=i}^{k-1}\sum_{r=k+1}^{j}r-l \),前面表示两侧任意排列,后面两个…
考虑建一棵小根堆笛卡尔树,即每次在当前区间中找到最小值,以最小值为界分割区间,由当前最小值所在位置向两边区间最小值所在位置连边,递归建树.那么该笛卡尔树中的一棵子树对应序列的一个连续区间,且根的权值是这段区间的最小值. 在笛卡尔树上跑树形dp.设f[i][j]为在i子树对应棋盘中放j个车的方案数,且棋盘中只考虑这段区间在根的父亲高度上方的部分.转移考虑合并两棵子树再在新增加的矩形部分放车即可,捣鼓一下组合数. #include<iostream> #include<cstdio>…
2616: SPOJ PERIODNI Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 128  Solved: 48[Submit][Status][Discuss] Description Input 第1行包括两个正整数N,K,表示了棋盘的列数和放的车数. 第2行包含N个正整数,表示了棋盘每列的高度. Output 包括一个非负整数,表示有多少种放置的方案,输出答案mod 1000000007后的结果即可. Sample Input 5 2…
题目描述 对于1 位二进制变量定义两种运算: 运算的优先级是: 先计算括号内的,再计算括号外的. “× ”运算优先于“⊕”运算,即计算表达式时,先计算× 运算,再计算⊕运算.例如:计算表达式A⊕B × C时,先计算 B × C,其结果再与 A 做⊕运算. 现给定一个未完成的表达式,例如+(*_),请你在横线处填入数字0 或者1 ,请问有多少种填法可以使得表达式的值为0 . 输入输出格式 输入格式: 输入文件名为exp.in ,共 2 行. 第1 行为一个整数 L,表示给定的表达式中除去横线外的运…