论文:word2vec Parameter Learning Explained 发表时间:2016 发表作者:Xin Rong 论文链接:论文链接 为了揭开Word2vec的神秘面纱,不得不重新整理复习了Word2vec的相关资料. Xin Rong 的这篇英文paper是更多人首推的 Word2vec 参考资料.这篇论文理论完备,由浅入深,且直击要害,既有 高屋建瓴的 intuition 的解释,也有细节的推导过程.下面一起学习下这篇paper. 由于word2vec模型学习生成的词向量表示…
开篇第一篇就写一个paper reading吧,用markdown+vim写东西切换中英文挺麻烦的,有些就偷懒都用英文写了. Stereo DSO: Large-Scale Direct Sparse Visual Odometry with Stereo Cameras Abstract Optimization objectives: intrinsic/extrinsic parameters of all keyframes all selected pixels' depth Inte…
Link of the Paper: https://arxiv.org/abs/1705.03122 Motivation: Compared to recurrent layers, convolutions create representations for fixed size contexts, however, the effective context size of the network can easily be made larger by stacking severa…
Link of the Paper: https://arxiv.org/abs/1806.06422 Innovations: The authors propose a novel learning based discriminative evaluation metric that is directly trained to distinguish between human and machine-generated captions. They train an automatic…
Link of the Paper: https://arxiv.org/pdf/1504.06692.pdf Innovations: The authors propose the Novel Visual Concept learning from Sentences ( NVCS ) task. In this task, methods need to learn novel concepts from sentence descriptions of a few images. Th…
Learning while Reading 不限于具体的书,只限于知识的宽度 这个系列集合了一周所学所看的精华,它们往往来自不只一本书 我们之所以将自然界分类,组织成各种概念,并按其分类,主要是因为我们是整个口语交流社会共同遵守的协定的参与者,这个协定以语言的形式固定下来.除非赞成这个协定中规定的有关语言信息的组织和分类,否则我们根本无法交谈. ——Benjamin Lee Whorf Learning and Asking 为什么选择面向对象? 机器语言.汇编语言.面向过程的语言,通过一层层…
Motivation: The lack of transparency of the deep  learning models creates key barriers to establishing trusts to the model or effectively troubleshooting classification errors Common methods on non-security applications: forward propagation / back pr…
Link of the Paper: https://arxiv.org/pdf/1409.3215.pdf Main Points: Encoder-Decoder Model: Input sequence -> A vector of a fixed dimensionality -> Target sequence. A multilayered  LSTM: The LSTM did not have difficulty on long sentences. Deep LSTMs…
来源:NIPS 2013 作者:DeepMind 理解基础: 增强学习基本知识 深度学习 特别是卷积神经网络的基本知识 创新点:第一个将深度学习模型与增强学习结合在一起从而成功地直接从高维的输入学习控制策略 详细是将卷积神经网络和Q Learning结合在一起.卷积神经网络的输入是原始图像数据(作为状态)输出则为每一个动作相应的价值Value Function来预计未来的反馈Reward 实验成果:使用同一个网络学习玩Atari 2600 游戏.在測试的7个游戏中6个超过了以往的方法而且好几个超…
MIL陷入局部最优,检测到局部,无法完整的检测到物体.将instance划分为空间相关和类别相关的子集.在这些子集中定义一系列平滑的损失近似代替原损失函数,优化这些平滑损失. C-MIL learns instance subsets, where the instances are spatially related, i.e., overlapping with each other, and class related, i.e., having similar object class…