3.Minst数据集分类】的更多相关文章

import numpy as np from keras.datasets import mnist from keras.utils import np_utils from keras.models import Sequential from keras.layers import Dense from keras.optimizers import SGD # 载入数据 (x_train,y_train),(x_test,y_test) = mnist.load_data() # (6…
分类问题 在机器学习中,主要有两大类问题,分别是分类和回归.下面我们先主讲分类问题. MINST 这里我们会用MINST数据集,也就是众所周知的手写数字集,机器学习中的 Hello World.sk-learn 提供了用于直接下载此数据集的方法: from sklearn.datasets import fetch_openml minst = fetch_openml('mnist_784', version=1) minst.keys() >dict_keys(['data', 'targe…
前言 最近刚开始接触机器学习,记录下目前的一些理解,以及看到的一些好文章mark一下 1.MINST数据集 MNIST 数据集来自美国国家标准与技术研究所, National Institute of Standards and Technology (NIST). 训练集 (training set) 由来自 250 个人手写的数字构成, 其中 50% 是高中学生, 50% 来自人口普查局 (the Census Bureau) 的工作人员. 测试集(test set) 也是同样比例的手写数字…
单向LSTM笔记, LSTM做minist数据集分类 先介绍下torch.nn.LSTM()这个API 1.input_size: 每一个时步(time_step)输入到lstm单元的维度.(实际输入的数据size为[batch_size, input_size]) 2. hidden_size: 确定了隐含状态hidden_state的维度. 可以简单的看成: 构造了一个权重, 隐含状态 3 . num_layers: 叠加的层数.如图所示num_layers为 3 4. batch_firs…
一.二次代价函数 1. 形式: 其中,C为代价函数,X表示样本,Y表示实际值,a表示输出值,n为样本总数 2. 利用梯度下降法调整权值参数大小,推导过程如下图所示: 根据结果可得,权重w和偏置b的梯度跟激活函数的梯度成正比(即激活函数的梯度越大,w和b的大小调整的越快,训练速度也越快) 3. 激活函数是sigmoid函数时,二次代价函数调整参数过程分析 理想调整参数状态:距离目标点远时,梯度大,参数调整较快:距离目标点近时,梯度小,参数调整较慢.如果我的目标点是调整到M点,从A点==>B点的调整…
Python实现鸢尾花数据集分类问题——基于skearn的NaiveBayes 代码如下: # !/usr/bin/env python # encoding: utf-8 __author__ = 'Xiaolin Shen' from sklearn.naive_bayes import GaussianNB,BernoulliNB import numpy as np import pandas as pd from sklearn import preprocessing from sk…
Python实现鸢尾花数据集分类问题——基于skearn的LogisticRegression 一. 逻辑回归 逻辑回归(Logistic Regression)是用于处理因变量为分类变量的回归问题,常见的是二分类或二项分布问题,也可以处理多分类问题,它实际上是属于一种分类方法. 概率p与因变量往往是非线性的,为了解决该类问题,我们引入了logit变换,使得logit(p)与自变量之  间存在线性相关的关系,逻辑回归模型定义如下: 1 #Sigmoid曲线: 2 import matplotli…
Python实现鸢尾花数据集分类问题——基于skearn的SVM 代码如下: # !/usr/bin/env python # encoding: utf-8 __author__ = 'Xiaolin Shen' from sklearn import svm import numpy as np from sklearn import model_selection import matplotlib.pyplot as plt import matplotlib as mpl from m…
keras-简单实现Mnist数据集分类 1.载入数据以及预处理 import numpy as np from keras.datasets import mnist from keras.utils import np_utils from keras.models import Sequential from keras.layers import * from keras.optimizers import SGD import os import tensorflow as tf #…
keras-基于CNN网络的Mnist数据集分类 1.数据的载入和预处理 import numpy as np from keras.datasets import mnist from keras.utils import np_utils from keras.models import Sequential from keras.layers import * from keras.optimizers import SGD,Adam from keras.regularizers imp…
本博客只用于学习,如果有错误的地方,恳请指正,如需转载请注明出处. 看机器学习也是有一段时间了,这两天终于勇敢地踏出了第一步,实现了HOG+SVM对图片分类,具体代码可以在github上下载,https://github.com/subicWang/HOG-SVM-classifer.大家都说HOG+SVM是在行人检测中很合拍的一对.至于为啥,我也讲不清楚.我猜想这么合拍的一对应用在图片分类上效果应该也不错吧,事实证明确实还行,速度挺快,分类正确率还行.我用的数据集是http://www.cs.…
iris数据集的中文名是安德森鸢尾花卉数据集,英文全称是Anderson’s Iris data set.iris包含150个样本,对应数据集的每行数据.每行数据包含每个样本的四个特征和样本的类别信息,所以iris数据集是一个150行5列的二维表.通俗地说,iris数据集是用来给花做分类的数据集,每个样本包含了花萼长度.花萼宽度.花瓣长度.花瓣宽度四个特征(前4列),我们需要建立一个分类器,分类器可以通过样本的四个特征来判断样本属于山鸢尾.变色鸢尾还是维吉尼亚鸢尾(这三个名词都是花的品种). 数…
这里使用的数据集仍然是CIFAR-10,由于之前写过一篇使用AlexNet对CIFAR数据集进行分类的文章,已经详细介绍了这个数据集,当时我们是直接把这些图片的数据文件下载下来,然后使用pickle进行反序列化获取数据的,具体内容可以参考这里:第十六节,卷积神经网络之AlexNet网络实现(六) 与MNIST类似,TensorFlow中也有一个下载和导入CIFAR数据集的代码文件,不同的是,自从TensorFlow1.0之后,将里面的Models模块分离了出来,分离和导入CIFAR数据集的代码在…
. 逻辑回归 逻辑回归(Logistic Regression)是用于处理因变量为分类变量的回归问题,常见的是二分类或二项分布问题,也可以处理多分类问题,它实际上是属于一种分类方法. 概率p与因变量往往是非线性的,为了解决该类问题,我们引入了logit变换,使得logit(p)与自变量之  间存在线性相关的关系,逻辑回归模型定义如下: #Sigmoid曲线: import matplotlib.pyplot as plt import numpy as np def Sigmoid(x): re…
作者有话说 最近学习了一下BP神经网络,写篇随笔记录一下得到的一些结果和代码,该随笔会比较简略,对一些简单的细节不加以说明. 目录 BP算法简要推导 应用实例 PYTHON代码 BP算法简要推导 该部分用一个$2\times3\times 2\times1$的神经网络为例简要说明BP算法的步骤. 向前计算输出 反向传播误差  权重更新  应用实例 鸢尾花数据集一共有150个样本,分为3个类别,每个样本有4个特征,(数据集链接:http://archive.ics.uci.edu/ml/datas…
  import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #载入数据集 mnist = input_data.read_data_sets("/data/stu05/mnist_data",one_hot=True)     Extracting /data/stu05/mnist_data/train-images-idx3-ubyte.gz Extracting /dat…
今天分享同样数据集的CNN处理方式,同时加上tensorboard,可以看到清晰的结构图,迭代1000次acc收敛到0.992 先放代码,注释比较详细,变量名字看单词就能知道啥意思 import tensorflow as tf import tensorflow.examples.tutorials.mnist.input_data as input_data   mnist = input_data.read_data_sets("MNIST_data/", one_hot=Tru…
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # 载入数据集 mnist = input_data.read_data_sets("MNIST_data", one_hot=True) # 批次大小 batch_size = 64 # 计算一个周期一共有多少个批次 n_batch = mnist.train.num_examples // batch_size # 定…
CIFAR-10.(Canadian Institute for Advanced Research)是由 Alex Krizhevsky.Vinod Nair 与 Geoffrey Hinton 收集的一个用于图像识别的数据集,60000个32*32的彩色图像,50000个training data,10000个 test data 有10类,飞机.汽车.鸟.猫.鹿.狗.青蛙.马.船.卡车,每类6000张图.与MNIST相比,色彩.颜色噪点较多,同一类物体大小不一.角度不同.颜色不同. 先要对…
首先是不含隐层的神经网络, 输入层是784个神经元 输出层是10个神经元 代码如下 #coding:utf-8 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #载入数据集 mnist = input_data.read_data_sets("MNIST_data", one_hot=True) #每个批次的大小 batch_size = 100 #计算一共有多少个批次…
任务目标 对MNIST手写数字数据集进行训练和评估,最终使得模型能够在测试集上达到\(98\%\)的正确率.(最终本文达到了\(99.36\%\)) 使用的库的版本: python:3.8.12 pytorch:1.5.1 代码地址GitHub:https://github.com/xiaohuiduan/deeplearning-study/tree/main/手写数字识别 数据集介绍 MNIST数字数据集来自MNIST handwritten digit database, Yann LeC…
import xgboost as xgb import numpy as np import pandas as pd from sklearn.model_selection import train_test_split if __name__ == '__main__': iris_feature_E = "sepal lenght", "sepal width", "petal length", "petal width&qu…
先贴代码 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('MNIST_data', one_hot=True) #每个批次的大小 batch_size = 100 n_batch = mnist.train.num_examples // batch_size #初始化权值 def weight_variabl…
import tensorflow as tf import os from matplotlib import pyplot as plt import tensorflow.keras.datasets from tensorflow.keras import Model import numpy as np from tensorflow.keras.layers import Dense,Flatten,BatchNormalization,Dropout,Conv2D,Activati…
神经网络算法以及Tensorflow的实现 一.多层向前神经网络(Multilayer Feed-Forward Neural Network) 多层向前神经网络由三部分组成:输入层(input layer), 隐藏层 (hidden layers), 输入层 (output layers) 每层由单元(units)组成 输入层(input layer)是由训练集的实例特征向量传入 经过连接结点的权重(weight)传入下一层,上一层的输出是下一层的输入 隐藏层的个数可以是任意的,输入层有一层,…
初始神经网络 这里要解决的问题是,将手写数字的灰度图像(28 像素 x28 像素)划分到 10 个类别中(0~9).我们将使用 MINST 数据集,它是机器学习领域的一个经典数据集,其历史几乎和这个领域一样长,而且已被人们深入研究.这个数据集包含 60000 张训练图像和 10000 张测试图像,由美国国家标准与技术研究院(National Institute of Standards and Technology,即 MINIST 中的 NIST)在 20 世纪 80 年代收集得到.你可以将"…
前言 本文将介绍机器学习分类算法中的Logistic回归分类算法并给出伪代码,Python代码实现. (说明:从本文开始,将接触到最优化算法相关的学习.旨在将这些最优化的算法用于训练出一个非线性的函数,以用于分类.) 算法原理 首先要提到的概念是回归. 对于回归这个概念,在以后的文章会有系统而深入的学习.简单的说,回归就是用一条线对N多数据点进行一个拟合,这个拟合的过程就叫做回归. Logistic回归分类算法就是对数据集建立回归公式,以此进行分类. 而至于如何寻找最佳回归系数,或者说是分类器的…
起源:决策树切分数据集 决策树每次决策时,按照一定规则切分数据集,并将切分后的小数据集递归处理.这样的处理方式给了线性回归处理非线性数据一个启发. 能不能先将类似特征的数据切成一小部分,再将这一小部分放大处理,使用线性的方法增加准确率呢? Part I:  树的枝与叶 枝:二叉 or 多叉? 在AdaBoost的单决策树中,对于连续型数据构建决策树,我们采取步进阈值切分2段的方法.还有一种简化处理,即选择子数据集中的当前维度所有不同的值作为阈值切分. 而在CART里,大于阈值归为左孩子,小于阈值…
Step1:(window 中完成): 控制面板/管理工具/ODBC 数据源/用户 Step2:(window 中完成): 添加/SQL Server Step3:(window 中完成): 自己定义名称可以选择性填写描述/服务器地址 Step4:(window 中完成): 使用用户输入登录ID和密码的SQL Server验证\输入登录ID以及密码 Step5:(window 中完成): 更改默认的数据库为(在下拉菜单中选择需要的数据库) Step6(在 SAS 中完成):options com…