首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
tf.contrib.rnn.LSTMCell 里面参数的意义
】的更多相关文章
tf.contrib.rnn.LSTMCell 里面参数的意义
num_units:LSTM cell中的单元数量,即隐藏层神经元数量.use_peepholes:布尔类型,设置为True则能够使用peephole连接cell_clip:可选参数,float类型,如果提供,则在单元输出激活之前,通过该值裁剪单元状态.Initializer:可选参数,用于权重和投影矩阵的初始化器.num_proj:可选参数,int类型,投影矩阵的输出维数,如果为None,则不执行投影.pro_clip:可选参数,float型,如果提供了num_proj>0和proj_clip…
tf.contrib.rnn.static_rnn与tf.nn.dynamic_rnn区别
tf.contrib.rnn.static_rnn与tf.nn.dynamic_rnn区别 https://blog.csdn.net/u014365862/article/details/78238807 MachineLP的Github(欢迎follow):https://github.com/MachineLP 我的GitHub:https://github.com/MachineLP/train_cnn-rnn-attention 自己搭建的一个框架,包含模型有:vgg(vgg16,vg…
深度学习原理与框架-递归神经网络-RNN网络基本框架(代码?) 1.rnn.LSTMCell(生成单层LSTM) 2.rnn.DropoutWrapper(对rnn进行dropout操作) 3.tf.contrib.rnn.MultiRNNCell(堆叠多层LSTM) 4.mlstm_cell.zero_state(state初始化) 5.mlstm_cell(进行LSTM求解)
问题:LSTM的输出值output和state是否是一样的 1. rnn.LSTMCell(num_hidden, reuse=tf.get_variable_scope().reuse) # 构建单层的LSTM网络 参数说明:num_hidden表示隐藏层的个数,reuse表示LSTM的参数进行复用 2.rnn.DropoutWrapper(cell, output_keep_prob=keep_prob) # 表示对rnn的输出层进行dropout 参数说明:cell表示单层的lstm,o…
关于tensorflow里面的tf.contrib.rnn.BasicLSTMCell 中num_units参数问题
这里的num_units参数并不是指这一层油多少个相互独立的时序lstm,而是lstm单元内部的几个门的参数,这几个门其实内部是一个神经网络,答案来自知乎: class TRNNConfig(object): """RNN配置参数""" # 模型参数 embedding_dim = 100 # 词向量维度 seq_length = 100 # 序列长度 num_classes = 2 # 类别数 vocab_size = 10000 # 词汇表达…
tf.contrib.rnn.core_rnn_cell.BasicLSTMCell should be replaced by tf.contrib.rnn.BasicLSTMCell.
For Tensorflow 1.2 and Keras 2.0, the line tf.contrib.rnn.core_rnn_cell.BasicLSTMCell should be replaced by tf.contrib.rnn.BasicLSTMCell.…
tensorflow教程:tf.contrib.rnn.DropoutWrapper
tf.contrib.rnn.DropoutWrapper Defined in tensorflow/python/ops/rnn_cell_impl.py. def __init__(self, cell, input_keep_prob=1.0, output_keep_prob=1.0, state_keep_prob=1.0, variational_recurrent=False, input_size=None, dtype=None, seed=None): Args: cell…
TF之RNN:实现利用scope.reuse_variables()告诉TF想重复利用RNN的参数的案例—Jason niu
import tensorflow as tf # 22 scope (name_scope/variable_scope) from __future__ import print_function class TrainConfig: batch_size = 20 time_steps = 20 input_size = 10 output_size = 2 cell_size = 11 learning_rate = 0.01 class TestConfig(TrainConfig):…
module 'tensorflow.contrib.rnn' has no attribute 'core_rnn_cell'
#tf.contrib.rnn.core_rnn_cell.BasicLSTMCell(lstm_size) tf.contrib.rnn.BasicLSTMCell(lstm_size)…
tf.contrib.layers.fully_connected参数笔记
tf.contrib.layers.fully_connected 添加完全连接的图层. tf.contrib.layers.fully_connected( inputs, num_outputs, activation_fn=tf.nn.relu, normalizer_fn=None, normalizer_params=None, weights_initializer=initializers.xavier_initializer(), wei…
tensorflow笔记3:CRF函数:tf.contrib.crf.crf_log_likelihood()
在分析训练代码的时候,遇到了,tf.contrib.crf.crf_log_likelihood,这个函数,于是想简单理解下: 函数的目的:使用crf 来计算损失,里面用到的优化方法是:最大似然估计 使用方法: tf.contrib.crf.crf_log_likelihood(inputs, tag_indices, sequence_lengths, transition_params=None) See the guide: CRF (contrib) Computes the log-l…
第十六节,使用函数封装库tf.contrib.layers
这一节,介绍TensorFlow中的一个封装好的高级库,里面有前面讲过的很多函数的高级封装,使用这个高级库来开发程序将会提高效率. 我们改写第十三节的程序,卷积函数我们使用tf.contrib.layers.conv2d(),池化函数使用tf.contrib.layers.max_pool2d()和tf.contrib.layers.avg_pool2d(),全连接函数使用tf.contrib.layers.fully_connected(). 一 tf.contrib.layers中的具体函数…
TF之RNN:matplotlib动态演示之基于顺序的RNN回归案例实现高效学习逐步逼近余弦曲线—Jason niu
import tensorflow as tf import numpy as np import matplotlib.pyplot as plt BATCH_START = 0 TIME_STEPS = 20 BATCH_SIZE = 50 INPUT_SIZE = 1 OUTPUT_SIZE = 1 CELL_SIZE = 10 LR = 0.006 BATCH_START_TEST = 0 def get_batch(): global BATCH_START, TIME_STEPS #…
学习笔记TF044:TF.Contrib组件、统计分布、Layer、性能分析器tfprof
TF.Contrib,开源社区贡献,新功能,内外部测试,根据反馈意见改进性能,改善API友好度,API稳定后,移到TensorFlow核心模块.生产代码,以最新官方教程和API指南参考. 统计分布.TF.contrib.ditributions模块,Bernoulli.Beta.Binomial.Gamma.Ecponential.Normal.Poisson.Uniform等统计分布,统计研究.应用中常用,各种统计.机器学习模型基石,概率模型.图形模型依赖. 每个不同统计分布不同特征.函数,同…
tf.contrib.learn.preprocessing.VocabularyProcessor()
tf.contrib.learn.preprocessing.VocabularyProcessor (max_document_length, min_frequency=0, vocabulary=None, tokenizer_fn=None) 参数: max_document_length: 文档的最大长度.如果文本的长度大于最大长度,那么它会被剪切,反之则用0填充. min_frequency: 词频的最小值,出现次数小于最小词频则不会被收录到词表中. vocabulary: Cate…
TensorFlow中max pooling层各参数的意义
官方教程中没有解释pooling层各参数的意义,找了很久终于找到,在tensorflow/python/ops/gen_nn_ops.py中有写: def _max_pool(input, ksize, strides, padding, name=None): r"""Performs max pooling on the input. Args: input: A `Tensor` of type `float32`. 4-D input to pool over. ks…
nginx.conf各参数的意义
搬运+翻译至 http://qiita.com/syou007/items/3e2d410bbe65a364b603 /etc/nginx/nginx.conf 记录各个参数的意义 user user nginx; nginx开启后会启动3个进程master process,worker process,cache manager process.本参数指定了master process以外的进程的用户.master process是用root启动的. worker_processes work…
Listen第二个参数的意义
今天主要回顾下listen的第二个参数的意义. 话说现在现在都是用框架写业务代码.真的很少在去关注最基本的socket函数的意义了.该忘得都忘得差不多了.~~~ 要慢慢捡起来. 主要是在看redis网络这块的时候它的第二个参数设置的是500多. 而且突然想到当初几年前腾讯电话面试问过我第二个参数是什么意思.当时我一股脑就说成connet的连接数量了.哈哈 2b. 照例 先上图,再解析 首先这个图是展示的TCP 三次握手.这里就不吸收三次握手了.我们主要是关注 两个队列 1:未完成队列:每…
tf.contrib.seq2seq.sequence_loss example:seqence loss 实例代码
#!/usr/bin/env python # -*- coding: utf-8 -*- import tensorflow as tf import numpy as np params=np.random.normal(loc=0.0,scale=1.0,size=[10,10]) encoder_inputs=tf.placeholder(dtype=tf.int32,shape=[10,10]) decoder_inputs=tf.placeholder(dtype=tf.int32,…
TF之RNN:TensorBoard可视化之基于顺序的RNN回归案例实现蓝色正弦虚线预测红色余弦实线—Jason niu
import tensorflow as tf import numpy as np import matplotlib.pyplot as plt BATCH_START = 0 TIME_STEPS = 20 BATCH_SIZE = 50 INPUT_SIZE = 1 OUTPUT_SIZE = 1 CELL_SIZE = 10 LR = 0.006 BATCH_START_TEST = 0 def get_batch(): global BATCH_START, TIME_STEPS x…
TensorFlow高级API(tf.contrib.learn)及可视化工具TensorBoard的使用
一.TensorFlow高层次机器学习API (tf.contrib.learn) 1.tf.contrib.learn.datasets.base.load_csv_with_header 加载csv格式数据 2.tf.contrib.learn.DNNClassifier 建立DNN模型(classifier) 3.classifer.fit 训练模型 4.classifier.evaluate 评价模型 5.classifier.predict 预测新样本 完整代码: from __fut…
TensorFlow高层次机器学习API (tf.contrib.learn)
TensorFlow高层次机器学习API (tf.contrib.learn) 1.tf.contrib.learn.datasets.base.load_csv_with_header 加载csv格式数据 2.tf.contrib.learn.DNNClassifier 建立DNN模型(classifier) 3.classifer.fit 训练模型 4.classifier.evaluate 评价模型 5.classifier.predict 预测新样本 完整代码: 1 from __fut…
mount命令中offset参数的意义
mount命令中offset参数的意义 感觉好久没有来写东西了,最近一直忙个不停,今天也一样,总感觉时间不够用,唉,这里来临时总结一下工作中的一点小收获吧.今天要说的是我们常用的解压IMG镜像文件的命令mount中参数offset的意义,offset说的就是偏移量,比如命令: mount -o iocharset=utf8,offset=16384 ./20131218.img ./test中,offset代表镜像内容真正开始的地方,因此我们需要指定正确的offset值才…
tf.variance_scaling_initializer() tensorflow学习:参数初始化
CNN中最重要的就是参数了,包括W,b. 我们训练CNN的最终目的就是得到最好的参数,使得目标函数取得最小值.参数的初始化也同样重要,因此微调受到很多人的重视,那么tf提供了哪些初始化参数的方法呢,我们能不能自己进行初始化呢? 所有的初始化方法都定义在tensorflow/python/ops/init_ops.py 1.tf.constant_initializer() 也可以简写为tf.Constant() 初始化为常数,这个非常有用,通常偏置项就是用它初始化的. 由它衍生出的两个初始化方法…
TensorFlow——tf.contrib.layers库中的相关API
在TensorFlow中封装好了一个高级库,tf.contrib.layers库封装了很多的函数,使用这个高级库来开发将会提高效率,卷积函数使用tf.contrib.layers.conv2d,池化函数使用tf.contrib.layers.max_pool2d和tf.contrib.layers.avg_pool2d,全连接函数使用 tf.contrib.layers.fully_connected,下面来看里面封装好的函数接口: 以最复杂的卷积为例,其他的几个函数与之类似: layers.c…
TensorFlow中的L2正则化函数:tf.nn.l2_loss()与tf.contrib.layers.l2_regularizerd()的用法与异同
tf.nn.l2_loss()与tf.contrib.layers.l2_regularizerd()都是TensorFlow中的L2正则化函数,tf.contrib.layers.l2_regularizerd()函数在tf 2.x版本中被弃用了. 两者都能用来L2正则化处理,但运算有一点不同. import tensorflow as tf sess = InteractiveSession() a = tf.constant([1, 2, 3], dtype=tf.float32) b =…
tf.contrib.legacy_seq2seq.basic_rnn_seq2seq 函数 example 最简单实现
tf.contrib.legacy_seq2seq.basic_rnn_seq2seq 函数 example 最简单实现 函数文档:https://www.tensorflow.org/api_docs/python/tf/contrib/legacy_seq2seq/basic_rnn_seq2seq import tensorflow as tf import numpy as np steps=10 batch_size=10 input_size=10 encoder_inputs =…
tf.contrib.slim模块简介
原文连接:https://blog.csdn.net/MOU_IT/article/details/82717745 1.简介 对于tensorflow.contrib这个库,tensorflow官方对它的描述是:此目录中的任何代码未经官方支持,可能会随时更改或删除.每个目录下都有指定的所有者.它旨在包含额外功能和贡献,最终会合并到核心Tensorflow中,但其接口可能仍然会发生变化,或者需要进行一些测试,看是否可以获得更广泛的接受.所以slim依然不属于原生tensorflow.那么什么是s…
CATransform3D参数的意义
经常忘记CATransform3D各参数的意思,记下来好好理解下 struct CATransform3D { CGFloat m11(x缩放),m12(y切变),m13(旋转),m14(); CGFloat m21(x切变),m22(y缩放),m23(),m24(); CGFloat m31(旋转),m32(),m33(),m34(透视效果,要操作的这个对象要有旋转的角度,否则没有效果.正直/负值都有意义); CGFloat m41(x平移),m42(y平移),m43(z平移),m44()…
tf.contrib.slim add_arg_scope
上一篇文章中我们介绍了arg_scope函数,它在每一层嵌套中update当前字典中参数形成新的字典,并入栈.那么这些参数是怎么作用到代码块中的函数的呢?比如说如下情况: with slim.arg_scope( [slim.conv2d, slim.separable_conv2d], weights_initializer=tf.truncated_normal_initializer( stddev=weights_initializer_stddev), activation_fn=ac…
tf.contrib.slim arg_scope
缘由 最近一直在看深度学习的代码,又一次看到了slim.arg_scope()的嵌套使用,具体代码如下: with slim.arg_scope( [slim.conv2d, slim.separable_conv2d], weights_initializer=tf.truncated_normal_initializer( stddev=weights_initializer_stddev), activation_fn=activation_fn, normalizer_fn=slim.b…