# 组合数学-组合数+lacus定理】的更多相关文章

目录 数论-组合数+lacus定理 组合数计算 lacus定理-大组合数取模 数论-组合数+lacus定理 组合数计算 为避免爆long long,\(20!\)就达到了long long 的范围,采用边乘边除的思想 ll C(ll n,ll m){ if(n<m)return 0; ll ans=1; for(ll i=1;i<=m;i++) ans=ans*(n-m+i)/i;//这里特别注意,debug了一上午没发现... /* 如果要取模 ans=ans*(n-m+i)%mod; an…
[BZOJ4403]序列统计(组合数学,卢卡斯定理) 题面 Description 给定三个正整数N.L和R,统计长度在1到N之间,元素大小都在L到R之间的单调不降序列的数量.输出答案对10^6+3取模的结果. Input 输入第一行包含一个整数T,表示数据组数. 第2到第T+1行每行包含三个整数N.L和R,N.L和R的意义如题所述. 1≤N,L,R≤10^9,1≤T≤100,输入数据保证L≤R. Output 输出包含T行,每行有一个数字,表示你所求出的答案对10^6+3取模的结果. Samp…
uoj86 mx的组合数 (lucas定理+数位dp+原根与指标+NTT) uoj 题目描述自己看去吧( 题解时间 首先看到 $ p $ 这么小还是质数,第一时间想到 $ lucas $ 定理. 注意 $ lucas $ 定理的另外一种写法是将数转换为 $ p $ 进制后计算$ C_{n}^{m} = \Pi C_{a_i}^{b_i} $ 所以考虑对于 $ l-1 $ 和 $ r $ 各进行一次数位 $ dp $ . $ dp[i][j] $表示从低位起算到 $ i $ 位计算结果取模后为 $…
4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 95  Solved: 33[Submit][Status][Discuss] Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加 强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威力上有了本质的提升.它有三个参数n,k.它会 向编号为0到k的位置发射威力为C(n,…
题目链接:http://acm.swust.edu.cn/problem/0247/ Time limit(ms): 1000 Memory limit(kb): 65535   Description 在很久很久以前,有个臭美国王.一天,他得到了一件新衣,于是决定巡城看看老百姓的反应(囧).于是他命令可怜的宰相数一下他有多少种巡城方案. 城市是一个N*M的矩形,(N+1)*(M+1)条街把城市分成了N*M块.国王从左下角出发,每次只能向右或向上走,右上角是终点. 请你帮帮可怜的宰相.   In…
link 输入\(n,k\),求\(\sum_{i=0}^k{n\choose i}\)对2333取模,10万组询问,n,k<=1e18 注意到一个2333这个数字很小并且还是质数这一良好性质,我们可以根据Lucas定理优化式子 为了方便,令\(p=2333\) 设\(f(n,k)=\sum_{i=0}^k{n\choose i}\) 对于\(i\in[0,p\lfloor\frac kp\rfloor)\),根据lucas定理有\({n\choose i}={n\%p\choose i\%p}…
http://acm.hdu.edu.cn/showproblem.php?pid=6129 [题意] 对于一个长度为n的序列a,我们可以计算b[i]=a1^a2^......^ai,这样得到序列b 重复这样的操作m次,每次都是从上次求出的序列a得到一个新序列b 给定初始的序列,求重复m次操作后得到的序列 [方法一] 假定n=5,我们模拟一次可以发现,经过m次操作后a1在b1......bn中出现的次数为: m=0: 1 0 0 0 0 m=2: 1 2 3 4 5 m=3: 1 3 6 10…
组合数 组合数就是高中排列组合的知识,求解组合数C(n,m),即从n个相同物品中取出m个的方案数. 求解方式 求解通式:$C^{m}_{n}=\dfrac {n!}{m!\left( n-m\right) !}$ 性质1:$C^{m}_{n}=C_{n}^{n-m}$ 性质2:$C^{m}_{n}=C^{m-1}_{n-1}-i+C^{m}_{n-1}$ 打表递推 根据性质2:$C^{m}_{n}=C^{m-1}_{n-1}+C^{m}_{n-1}$ 组合数算出来特别大,往往都会要求取余,这里取…
Orz 因为有T的限制,所以不难搞出来一个$O(T^3)$的暴力dp 但我没试 据说有30分? 正解的话显然是组合数学啦 首先$n,m$可能为负,但这并没有影响, 我们可以都把它搞成正的 即都看作向右上方走 那么可以想到真正有效的步都是向右或者向上走的 其它两个方向都是在起反作用 设u为向上走步数,d下,l左,r右 它们满足关系: $r-l=m,u-d=n,T=u+d+l+r$ 因为有效步数为$m+n$,所以$T-m-n$必为偶数 因为要保证剩下的步上下均分,左右均分 枚举$udlr$其中一个可…
Tom and matrix Problem's Link:   http://acm.hdu.edu.cn/showproblem.php?pid=5226 Mean: 题意很简单,略. analyse: 直接可以用Lucas定理+快速幂水过的,但是我却作死的用了另一种方法. 方法一:Lucas定理+快速幂水过 方法二:首先问题可以转化为求(0,0),(n,m)这个子矩阵的所有数之和.画个图容易得到一个做法,对于n<=m,答案就是2^0+2^1+...+2^m=2^(m+1)-1,对于n>m…