Uva 11300 Spreading the Wealth(贪心)】的更多相关文章

p.MsoNormal { margin: 0pt; margin-bottom: .0001pt; text-align: justify; font-family: "Times New Roman"; font-size: 10.5000pt } h3 { margin-top: 5.0000pt; margin-bottom: 5.0000pt; text-align: left; font-family: 宋体; font-weight: bold; font-size: 1…
题目链接:uva 11300 - Spreading the Wealth 题目大意:有n个人坐在圆桌旁,每个人有一定的金币,金币的总数可以被n整除,现在每个人可以给左右的人一些金币,使得每个人手上的金币数量相等,问说最少移动的金币数额. 解题思路:假设xi为第i个人给左手边人的金币数量,那么就有a[i] - x[i]+ x[i + 1] = aver.那么 a[1] - x[1] + x[2] = aver -> x2 = aver - a[1] + x[1]  -> x[2]= x[1]…
UVA.11300 Spreading the Wealth (思维题) 题意分析 现给出n个人,每个人手中有a[i]个数的金币,每个人能给其左右相邻的人金币,现在要求你安排传递金币的方案,使得每个人手中的金币个数相等,并求出转移金币的最小个数.保证(Σa[i])/n为整数. 第一眼没有思绪,这种推导方式还是第一次见到. 设ai为第i个人初始金币数量,xi为第i个人转移给i-1个人金币的数量(i为1表示转移给第n个人),(Σa[i])/n = m. 有了上述的基础,可以写出每个人的金币表达式:…
题目传送门 /* 假设x1为1号给n号的金币数(逆时针),下面类似 a[1] - x1 + x2 = m(平均数) 得x2 = x1 + m - a[1] = x1 - c1; //规定c1 = a[1] - m,下面类似 a[2] - x2 + x3 = m ,x3 = m + x2 - a[2] = m + (m + x1 - a[1]) - a[2] = 2 * m + x1 - a[1] - a[2] = x1 - c2; a[3] - x3 + x4 = m ,x4 = m + x3…
UVA - 11300 Spreading the Wealth [题目描述] 圆桌旁边坐着n个人,每个人有一定数量的金币,金币的总数能被n整除.每个人可以给他左右相邻的人一些金币,最终使得每个人的金币数量相等.您的任务是求出被转手的金币的数量的最小值. [输入格式] 输入包含多组数据.每组数据第一行为一个整数n(n<=1000000)0),以下n行每行为一个整数,按逆时针顺序给出每个人拥有的金币数.输入结束标志为文件结束符(EOF) [输出格式] 对于每组数据,输出被转手的金币的数量的最小值.…
Spreading the Wealth Problem A Communist regime is trying to redistribute wealth in a village. They have have decided to sit everyone around a circular table. First, everyone has converted all of their properties to coins of equal value, such that th…
Spreading the Wealth Problem A Communist regime is trying to redistribute wealth in a village. They have have decided to sit everyone around a circular table. First, everyone has converted all of their properties to coins of equal value, such that th…
Spreading the Wealth Problem's Link ---------------------------------------------------------------------------- Mean: n个人围成一圈,每个人手里有Ai个金币,每个人可以给与他相邻的人一些金币,通过一系列的流转后,最后所有人的金币数相等.问整个过程最少需要流转多少金币? analyse: 这是一道很有趣的数学题. 假设有4个人,按顺序编号1,2,3,4.假设1号给2号3枚金币,2…
题目链接:https://vjudge.net/problem/UVA-11300 这道题的思路太神了,但很难想到是贪心. 用M表示每个人最终拥有的金币数. 首先假设有四个人.假设1号给2号3枚,2号又给1号5枚,那么实际上1号并没有给2号,而2号给了1号2枚.这样设$x_2$表示2号给了1号$x_2$枚.若$x_2<0$,那么就表示1号给了2号$-x_2$枚.这样我们就相当于在1号和2号之间连了一条边,表示1号2号之间硬币关系(注意是环形,所以$x_1$表示1号和4号之间的硬币关系). 假设1…
Problem A Communist regime is trying to redistribute wealth in a village. They have have decided to sit everyone around a circular table. First, everyone has converted all of their properties to coins of equal value, such that the total number of coi…